QCS/DM4.typ
2024-11-30 10:26:49 +01:00

92 lines
2.3 KiB
Plaintext

#import "qcs.typ": *
#set page(
paper: "a4",
header: align(center)[
QCS - DM4 - Augustin LUCAS
],
)
#question("Assignment Q1",
([
+ Let $U=mat(u_(00),u_(01);u_(10),u_(11))$. Write a matrix representation of $U[1]$ and $U[2]$ for $n=2$.
+ For $n=3$, write a matrix representation of CNOT$[3,1]$.
])
)
+ $U[1] &= U times.circle I
&= mat(u_(00),u_(01);u_(10),u_(11)) times.circle mat(1,0;0,1)
&= mat(u_(00)I,u_(01)I;u_(10)I,u_(11)I)
&= mat(u_(00),0,u_(01),0;0,u_(00),0,u_(01);u_(10),0,u_(11),0;0,u_(10),0,u_(11))$
$U[2] &= I times.circle U
&= mat(U,0;0,U) = mat(u_(00),u_(01),0,0;u_(10),u_(11),0,0;0,0,u_(00),u_(01);0,0,u_(01),u_(11))$
+ $"CNOT"[3,1]$ corresponds to the following circuit:
#{
import "@preview/quill:0.5.0": *
quantum-circuit(
lstick($v_0$), 1, targ(), 2, rstick($$), [\ ],
lstick($v_1$), 1, rstick($$), 2, [\ ],
lstick($v_2$), 1, ctrl(-2), 2, rstick($$)
)
}
Which corresponds to the following matrix:
$"CNOT"[3,1] = mat(
1,0,0,0,0,0,0,0;
0,0,0,0,0,1,0,0;
0,0,1,0,0,0,0,0;
0,0,0,0,0,0,0,1;
0,0,0,0,1,0,0,0;
0,1,0,0,0,0,0,0;
0,0,0,0,0,0,1,0;
0,0,0,1,0,0,0,0;
)$
#question("Assignment Q2",
([
Let $A=1/sqrt(2) mat(-i,-1;1,i)$ and $B=mat(0,1;-1,0)$.
Which 2-qubit gate can you apply on the first qubits at the end of the circuit
#{
import "@preview/quill:0.5.0": *
quantum-circuit(
lstick($$), ctrl(2), 1, ctrl(2), 1, [\ ],
lstick($$), 1, ctrl(1), 1, ctrl(1), [\ ],
lstick($$), $B^(-1)$, $A^(-1)$, $B$, $A$, rstick($$)
)
}
to get a Toffoli gate ?
]),
)
The circuit corresponds to applying the following gate:
$C &= mat(I_2,0,0,0;0,I_2,0,0;0,0,B^(-1),0;0,0,0,B^(-1))
mat(I_2,0,0,0;0,A^(-1),0,0;0,0,I_2,0;0,0,0,A^(-1))
mat(I_2,0,0,0;0,I_2,0,0;0,0,B,0;0,0,0,B)
mat(I_2,0,0,0;0,A,0,0;0,0,I_2,0;0,0,0,A)
&= mat(I_2,0,0,0;0,I_2,0,0;0,0,I_2,0;0,0,0,B^(-1)A^(-1) B A)$
And $B^(-1)A^(-1) B A = B A B A = mat(0,i;i,0)$.
Let $D = i I_2$. Then, $C mat(I_2,0,0,0;0,I_2,0,0;0,0,I_2,0;0,0,0,D) = "Toffoli"$
Which corresponds to the following circuit:
#{
import "@preview/quill:0.5.0": *
quantum-circuit(
lstick($$), ctrl(2), 1, ctrl(2), 1, [\ ],
lstick($$), 1, ctrl(1), 1, ctrl(1), [\ ],
lstick($$), $B^(-1)$, $A^(-1)$, $B$, $A$, $D$, rstick($$)
)
}