#import "qcs.typ": * #set page( paper: "a4", header: align(center)[ QCS - DM4 - Augustin LUCAS ], ) #question("Assignment Q1", ([ + Let $U=mat(u_(00),u_(01);u_(10),u_(11))$. Write a matrix representation of $U[1]$ and $U[2]$ for $n=2$. + For $n=3$, write a matrix representation of CNOT$[3,1]$. ]) ) + $U[1] &= U times.circle I &= mat(u_(00),u_(01);u_(10),u_(11)) times.circle mat(1,0;0,1) &= mat(u_(00)I,u_(01)I;u_(10)I,u_(11)I) &= mat(u_(00),0,u_(01),0;0,u_(00),0,u_(01);u_(10),0,u_(11),0;0,u_(10),0,u_(11))$ $U[2] &= I times.circle U &= mat(U,0;0,U) = mat(u_(00),u_(01),0,0;u_(10),u_(11),0,0;0,0,u_(00),u_(01);0,0,u_(01),u_(11))$ + $"CNOT"[3,1]$ corresponds to the following circuit: #{ import "@preview/quill:0.5.0": * quantum-circuit( lstick($v_0$), 1, targ(), 2, rstick($$), [\ ], lstick($v_1$), 1, rstick($$), 2, [\ ], lstick($v_2$), 1, ctrl(-2), 2, rstick($$) ) } Which corresponds to the following matrix: $"CNOT"[3,1] = mat( 1,0,0,0,0,0,0,0; 0,0,0,0,0,1,0,0; 0,0,1,0,0,0,0,0; 0,0,0,0,0,0,0,1; 0,0,0,0,1,0,0,0; 0,1,0,0,0,0,0,0; 0,0,0,0,0,0,1,0; 0,0,0,1,0,0,0,0; )$ #question("Assignment Q2", ([ Let $A=1/sqrt(2) mat(-i,-1;1,i)$ and $B=mat(0,1;-1,0)$. Which 2-qubit gate can you apply on the first qubits at the end of the circuit #{ import "@preview/quill:0.5.0": * quantum-circuit( lstick($$), ctrl(2), 1, ctrl(2), 1, [\ ], lstick($$), 1, ctrl(1), 1, ctrl(1), [\ ], lstick($$), $B^(-1)$, $A^(-1)$, $B$, $A$, rstick($$) ) } to get a Toffoli gate ? ]), ) The circuit corresponds to applying the following gate: $C &= mat(I_2,0,0,0;0,I_2,0,0;0,0,B^(-1),0;0,0,0,B^(-1)) mat(I_2,0,0,0;0,A^(-1),0,0;0,0,I_2,0;0,0,0,A^(-1)) mat(I_2,0,0,0;0,I_2,0,0;0,0,B,0;0,0,0,B) mat(I_2,0,0,0;0,A,0,0;0,0,I_2,0;0,0,0,A) &= mat(I_2,0,0,0;0,I_2,0,0;0,0,I_2,0;0,0,0,B^(-1)A^(-1) B A)$ And $B^(-1)A^(-1) B A = B A B A = mat(0,i;i,0)$. Let $D = i I_2$. Then, $C mat(I_2,0,0,0;0,I_2,0,0;0,0,I_2,0;0,0,0,D) = "Toffoli"$ Which corresponds to the following circuit: #{ import "@preview/quill:0.5.0": * quantum-circuit( lstick($$), ctrl(2), 1, ctrl(2), 1, [\ ], lstick($$), 1, ctrl(1), 1, ctrl(1), [\ ], lstick($$), $B^(-1)$, $A^(-1)$, $B$, $A$, $D$, rstick($$) ) }