Add DM2 & DM3.typ
This commit is contained in:
parent
1eefe32fe4
commit
9578811c14
77
DM2.typ
Normal file
77
DM2.typ
Normal file
@ -0,0 +1,77 @@
|
||||
#set page(
|
||||
paper: "a4",
|
||||
header: align(center)[
|
||||
QCS - DM2 - Augustin LUCAS
|
||||
],
|
||||
)
|
||||
|
||||
== Q1
|
||||
|
||||
We want to *simplify* the following circuit:
|
||||
|
||||
#{
|
||||
import "@preview/quill:0.4.0": *
|
||||
|
||||
quantum-circuit(
|
||||
lstick($|v_0〉$), $H$, ctrl(1), $H$, [\ ],
|
||||
lstick($|v_1〉$), $H$, targ(), $H$
|
||||
)
|
||||
}
|
||||
|
||||
The gates
|
||||
|
||||
#{
|
||||
import "@preview/quill:0.4.0": *
|
||||
|
||||
quantum-circuit(
|
||||
lstick($$), $H$, rstick($$), [\ ],
|
||||
lstick($$), $H$, rstick($$)
|
||||
)
|
||||
}
|
||||
|
||||
correspond to the following matrice: $1/2 mat(H, H; H, -H;)$
|
||||
|
||||
And CNOT = $mat(1, 0, 0, 0; 0, 1, 0, 0; 0, 0, 0, 1; 0, 0, 1, 0;)$
|
||||
|
||||
The circuit then corresponds to the following operation:
|
||||
|
||||
$A&=1/2 mat(1, 1, 1, 1; 1, -1, 1, -1; 1, 1, -1, -1; 1, -1, -1, 1)
|
||||
mat(1, 0, 0, 0; 0, 1, 0, 0; 0, 0, 0, 1; 0, 0, 1, 0;)
|
||||
1/2 mat(1, 1, 1, 1; 1, -1, 1, -1; 1, 1, -1, -1; 1, -1, -1, 1) \
|
||||
|
||||
&=1/4 mat(4, 0, 0, 0; 0, 0, 0, 4; 0, 0, 4, 0; 0, 4, 0, 0) \
|
||||
&=mat(1, 0, 0, 0; 0, 0, 0, 1; 0, 0, 1, 0; 0, 1, 0, 0)$
|
||||
|
||||
Which gives $cases(
|
||||
|00〉 => |00〉,
|
||||
|01〉 => |11〉,
|
||||
|10〉 => |10〉,
|
||||
|11〉 => |01〉
|
||||
)$ that corresponds to an *inversed CNOT* that we can denote:
|
||||
|
||||
#{
|
||||
import "@preview/quill:0.4.0": *
|
||||
|
||||
quantum-circuit(
|
||||
lstick($|v_0〉$), targ(), rstick($$), [\ ],
|
||||
lstick($|v_1〉$), ctrl(-1), rstick($$)
|
||||
)
|
||||
}
|
||||
|
||||
|
||||
== Q2
|
||||
|
||||
In the *classical case*, we need $2^(n-1)+1$ queries to determine if $f$ is constant.
|
||||
Using only $2^n$ queries, all queries could have the same value with $f$ balanced.
|
||||
|
||||
In the *quantum version*, we may use the following circuit:
|
||||
#{
|
||||
import "@preview/quill:0.4.0": *
|
||||
|
||||
quantum-circuit(
|
||||
lstick($|0〉$), $H$, mqgate($U_f$, n:4), $H$, meter(), setwire(2), rstick($$), [\ ],
|
||||
lstick($|0〉$), $H$, targ(), $H$, meter(), setwire(2), rstick($$), [\ ],
|
||||
lstick($...$), [\ ],
|
||||
lstick($|1〉$), $H$, targ()
|
||||
)
|
||||
}
|
63
DM3.typ
Normal file
63
DM3.typ
Normal file
@ -0,0 +1,63 @@
|
||||
#set page(
|
||||
paper: "a4",
|
||||
header: align(center)[
|
||||
QCS - DM3 - Augustin LUCAS
|
||||
],
|
||||
)
|
||||
#import "@preview/showybox:2.0.1": showybox
|
||||
#import "@preview/physica:0.9.3": bra, ket
|
||||
|
||||
#showybox(
|
||||
frame: (
|
||||
border-color: blue.darken(50%),
|
||||
title-color: blue.lighten(60%),
|
||||
body-color: blue.lighten(80%)
|
||||
),
|
||||
title-style: (
|
||||
color: black,
|
||||
weight: "regular",
|
||||
align: center
|
||||
),
|
||||
shadow: (
|
||||
offset: 3pt,
|
||||
),
|
||||
title: "Assignment",
|
||||
([
|
||||
+ Starting from state $ket(Phi)= 1/sqrt(2)(ket(00)+ket(11))$, is it true that for any basis ($ket(v_0)$, ket(v_1)), Alice and Bob will get the same outcome ?
|
||||
+ Show that, for the state $1/sqrt(2)(ket(01)-ket(10))$, the outcome of Alice and Bob are opposite in any basis ($ket(v_0), ket(v_1)$)
|
||||
]),
|
||||
)
|
||||
|
||||
+ Let $ket(v_0),ket(v_1)$ be a basis. $ket(v_0)=mat(alpha; beta)$, $ket(v_1)=mat(gamma;delta)$
|
||||
|
||||
The probability of getting the state $ket(v_0v_1)$ is given by:
|
||||
|
||||
$|(bra(v_0) times.circle bra(v_1))ket(Phi)|^2
|
||||
&=1/2|bra(v_0v_1)ket(00)+bra(v_0v_1)ket(11)|^2
|
||||
&=1/2|alpha gamma + beta delta|^2$
|
||||
|
||||
Then, the probability of getting this state is non-null iff $alpha gamma + beta delta eq.not 0$
|
||||
|
||||
$(ket(v_0), ket(v_1))$ being a base, we have $bra(v_0)ket(v_1) = overline(alpha) gamma + overline(beta) delta = 0$
|
||||
|
||||
Any solution of the following system then shows the possibility of a different outcome:
|
||||
$cases(
|
||||
alpha gamma = -beta delta,
|
||||
overline(alpha) gamma eq.not -overline(beta) delta
|
||||
)$
|
||||
|
||||
$ket(v_0)=1/sqrt(2)mat(1;i)$, $ket(v_1)=1/sqrt(2)mat(1;-i)$ is a solution to this system.
|
||||
Then, it is not true that Alice and Bob will get the same outcome in any basis.
|
||||
|
||||
+ Let $(ket(v_0), ket(v_1))$ be a basis. $ket(v_0)=mat(alpha; beta)$, $ket(v_1)=mat(gamma;delta)$.
|
||||
Let $ket(Phi)=1/sqrt(2)(ket(01)-ket(10))$
|
||||
|
||||
Let's compute the probability of Alice and Bob getting the same outcome $ket(v_0)$ from state $ket(Phi)$.
|
||||
|
||||
$|bra(v_0v_0)ket(Phi)|^2 &= |alpha beta - beta alpha|^2 = 0$
|
||||
|
||||
And similarly, $|bra(v_1v_1)ket(Phi)|^2 &= |gamma delta - delta gamma|^2 = 0$
|
||||
|
||||
Then, the outcome of Alice and Bob's measurements are opposite in any basis.
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user