From 9578811c148b429289512d56b0a81c462eb944b9 Mon Sep 17 00:00:00 2001 From: augustin64 Date: Fri, 27 Sep 2024 09:26:24 +0200 Subject: [PATCH] Add DM2 & DM3.typ --- DM2.typ | 77 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++ DM3.typ | 63 ++++++++++++++++++++++++++++++++++++++++++++++ Makefile | 2 ++ 3 files changed, 142 insertions(+) create mode 100644 DM2.typ create mode 100644 DM3.typ create mode 100644 Makefile diff --git a/DM2.typ b/DM2.typ new file mode 100644 index 0000000..13e5954 --- /dev/null +++ b/DM2.typ @@ -0,0 +1,77 @@ +#set page( + paper: "a4", + header: align(center)[ + QCS - DM2 - Augustin LUCAS + ], +) + +== Q1 + +We want to *simplify* the following circuit: + +#{ + import "@preview/quill:0.4.0": * + + quantum-circuit( + lstick($|v_0〉$), $H$, ctrl(1), $H$, [\ ], + lstick($|v_1〉$), $H$, targ(), $H$ + ) +} + +The gates + +#{ + import "@preview/quill:0.4.0": * + + quantum-circuit( + lstick($$), $H$, rstick($$), [\ ], + lstick($$), $H$, rstick($$) + ) +} + +correspond to the following matrice: $1/2 mat(H, H; H, -H;)$ + +And CNOT = $mat(1, 0, 0, 0; 0, 1, 0, 0; 0, 0, 0, 1; 0, 0, 1, 0;)$ + +The circuit then corresponds to the following operation: + +$A&=1/2 mat(1, 1, 1, 1; 1, -1, 1, -1; 1, 1, -1, -1; 1, -1, -1, 1) + mat(1, 0, 0, 0; 0, 1, 0, 0; 0, 0, 0, 1; 0, 0, 1, 0;) + 1/2 mat(1, 1, 1, 1; 1, -1, 1, -1; 1, 1, -1, -1; 1, -1, -1, 1) \ + + &=1/4 mat(4, 0, 0, 0; 0, 0, 0, 4; 0, 0, 4, 0; 0, 4, 0, 0) \ + &=mat(1, 0, 0, 0; 0, 0, 0, 1; 0, 0, 1, 0; 0, 1, 0, 0)$ + +Which gives $cases( + |00〉 => |00〉, + |01〉 => |11〉, + |10〉 => |10〉, + |11〉 => |01〉 +)$ that corresponds to an *inversed CNOT* that we can denote: + +#{ + import "@preview/quill:0.4.0": * + + quantum-circuit( + lstick($|v_0〉$), targ(), rstick($$), [\ ], + lstick($|v_1〉$), ctrl(-1), rstick($$) + ) +} + + +== Q2 + +In the *classical case*, we need $2^(n-1)+1$ queries to determine if $f$ is constant. +Using only $2^n$ queries, all queries could have the same value with $f$ balanced. + +In the *quantum version*, we may use the following circuit: +#{ + import "@preview/quill:0.4.0": * + + quantum-circuit( + lstick($|0〉$), $H$, mqgate($U_f$, n:4), $H$, meter(), setwire(2), rstick($$), [\ ], + lstick($|0〉$), $H$, targ(), $H$, meter(), setwire(2), rstick($$), [\ ], + lstick($...$), [\ ], + lstick($|1〉$), $H$, targ() + ) +} diff --git a/DM3.typ b/DM3.typ new file mode 100644 index 0000000..270b490 --- /dev/null +++ b/DM3.typ @@ -0,0 +1,63 @@ +#set page( + paper: "a4", + header: align(center)[ + QCS - DM3 - Augustin LUCAS + ], +) +#import "@preview/showybox:2.0.1": showybox +#import "@preview/physica:0.9.3": bra, ket + +#showybox( + frame: ( + border-color: blue.darken(50%), + title-color: blue.lighten(60%), + body-color: blue.lighten(80%) + ), + title-style: ( + color: black, + weight: "regular", + align: center + ), + shadow: ( + offset: 3pt, + ), + title: "Assignment", + ([ + + Starting from state $ket(Phi)= 1/sqrt(2)(ket(00)+ket(11))$, is it true that for any basis ($ket(v_0)$, ket(v_1)), Alice and Bob will get the same outcome ? + + Show that, for the state $1/sqrt(2)(ket(01)-ket(10))$, the outcome of Alice and Bob are opposite in any basis ($ket(v_0), ket(v_1)$) + ]), +) + ++ Let $ket(v_0),ket(v_1)$ be a basis. $ket(v_0)=mat(alpha; beta)$, $ket(v_1)=mat(gamma;delta)$ + + The probability of getting the state $ket(v_0v_1)$ is given by: + + $|(bra(v_0) times.circle bra(v_1))ket(Phi)|^2 + &=1/2|bra(v_0v_1)ket(00)+bra(v_0v_1)ket(11)|^2 + &=1/2|alpha gamma + beta delta|^2$ + + Then, the probability of getting this state is non-null iff $alpha gamma + beta delta eq.not 0$ + + $(ket(v_0), ket(v_1))$ being a base, we have $bra(v_0)ket(v_1) = overline(alpha) gamma + overline(beta) delta = 0$ + + Any solution of the following system then shows the possibility of a different outcome: + $cases( + alpha gamma = -beta delta, + overline(alpha) gamma eq.not -overline(beta) delta + )$ + + $ket(v_0)=1/sqrt(2)mat(1;i)$, $ket(v_1)=1/sqrt(2)mat(1;-i)$ is a solution to this system. + Then, it is not true that Alice and Bob will get the same outcome in any basis. + ++ Let $(ket(v_0), ket(v_1))$ be a basis. $ket(v_0)=mat(alpha; beta)$, $ket(v_1)=mat(gamma;delta)$. + Let $ket(Phi)=1/sqrt(2)(ket(01)-ket(10))$ + + Let's compute the probability of Alice and Bob getting the same outcome $ket(v_0)$ from state $ket(Phi)$. + + $|bra(v_0v_0)ket(Phi)|^2 &= |alpha beta - beta alpha|^2 = 0$ + + And similarly, $|bra(v_1v_1)ket(Phi)|^2 &= |gamma delta - delta gamma|^2 = 0$ + + Then, the outcome of Alice and Bob's measurements are opposite in any basis. + + diff --git a/Makefile b/Makefile new file mode 100644 index 0000000..578ea82 --- /dev/null +++ b/Makefile @@ -0,0 +1,2 @@ +clean: + rm -f *.aux *.log *.pdf