Update dependencies
This commit is contained in:
parent
04b0bfb625
commit
7e70fb58ae
8
DM2.typ
8
DM2.typ
@ -10,7 +10,7 @@
|
||||
We want to *simplify* the following circuit:
|
||||
|
||||
#{
|
||||
import "@preview/quill:0.4.0": *
|
||||
import "@preview/quill:0.5.0": *
|
||||
|
||||
quantum-circuit(
|
||||
lstick($|v_0〉$), $H$, ctrl(1), $H$, [\ ],
|
||||
@ -21,7 +21,7 @@ We want to *simplify* the following circuit:
|
||||
The gates
|
||||
|
||||
#{
|
||||
import "@preview/quill:0.4.0": *
|
||||
import "@preview/quill:0.5.0": *
|
||||
|
||||
quantum-circuit(
|
||||
lstick($$), $H$, rstick($$), [\ ],
|
||||
@ -50,7 +50,7 @@ Which gives $cases(
|
||||
)$ that corresponds to an *inversed CNOT* that we can denote:
|
||||
|
||||
#{
|
||||
import "@preview/quill:0.4.0": *
|
||||
import "@preview/quill:0.5.0": *
|
||||
|
||||
quantum-circuit(
|
||||
lstick($|v_0〉$), targ(), rstick($$), [\ ],
|
||||
@ -66,7 +66,7 @@ Using only $2^n$ queries, all queries could have the same value with $f$ balance
|
||||
|
||||
In the *quantum version*, we may use the following circuit:
|
||||
#{
|
||||
import "@preview/quill:0.4.0": *
|
||||
import "@preview/quill:0.5.0": *
|
||||
|
||||
quantum-circuit(
|
||||
lstick($|0〉$), $H$, mqgate($U_f$, n:4), $H$, meter(), setwire(2), rstick($$), [\ ],
|
||||
|
2
DM3.typ
2
DM3.typ
@ -23,7 +23,7 @@
|
||||
),
|
||||
title: "Assignment",
|
||||
([
|
||||
+ Starting from state $ket(Phi)= 1/sqrt(2)(ket(00)+ket(11))$, is it true that for any basis ($ket(v_0)$, ket(v_1)), Alice and Bob will get the same outcome ?
|
||||
+ Starting from state $ket(Phi)= 1/sqrt(2)(ket(00)+ket(11))$, is it true that for any basis ($ket(v_0), ket(v_1)$), Alice and Bob will get the same outcome ?
|
||||
+ Show that, for the state $1/sqrt(2)(ket(01)-ket(10))$, the outcome of Alice and Bob are opposite in any basis ($ket(v_0), ket(v_1)$)
|
||||
]),
|
||||
)
|
||||
|
6
DM4.typ
6
DM4.typ
@ -26,7 +26,7 @@
|
||||
+ $"CNOT"[3,1]$ corresponds to the following circuit:
|
||||
|
||||
#{
|
||||
import "@preview/quill:0.4.0": *
|
||||
import "@preview/quill:0.5.0": *
|
||||
|
||||
quantum-circuit(
|
||||
lstick($v_0$), 1, targ(), 2, rstick($$), [\ ],
|
||||
@ -54,7 +54,7 @@
|
||||
Let $A=1/sqrt(2) mat(-i,-1;1,i)$ and $B=mat(0,1;-1,0)$.
|
||||
Which 2-qubit gate can you apply on the first qubits at the end of the circuit
|
||||
#{
|
||||
import "@preview/quill:0.4.0": *
|
||||
import "@preview/quill:0.5.0": *
|
||||
|
||||
quantum-circuit(
|
||||
lstick($$), ctrl(2), 1, ctrl(2), 1, [\ ],
|
||||
@ -80,7 +80,7 @@ Let $D = i I_2$. Then, $C mat(I_2,0,0,0;0,I_2,0,0;0,0,I_2,0;0,0,0,D) = "Toffoli"
|
||||
|
||||
Which corresponds to the following circuit:
|
||||
#{
|
||||
import "@preview/quill:0.4.0": *
|
||||
import "@preview/quill:0.5.0": *
|
||||
|
||||
quantum-circuit(
|
||||
lstick($$), ctrl(2), 1, ctrl(2), 1, [\ ],
|
||||
|
2
DM5.typ
2
DM5.typ
@ -17,7 +17,7 @@
|
||||
The phase estimation circuit described in class is:
|
||||
|
||||
#{
|
||||
import "@preview/quill:0.4.0": *
|
||||
import "@preview/quill:0.5.0": *
|
||||
|
||||
quantum-circuit(
|
||||
lstick($ket(0)$), $H$, slice(label: $ket(Phi_0)$), ctrl(3, show-dot: false),
|
||||
|
Loading…
Reference in New Issue
Block a user