From 7e70fb58ae0ac8e5c46f1c54d9cc6a5a1e6500a7 Mon Sep 17 00:00:00 2001 From: augustin64 Date: Sat, 30 Nov 2024 10:26:49 +0100 Subject: [PATCH] Update dependencies --- DM2.typ | 8 ++++---- DM3.typ | 2 +- DM4.typ | 6 +++--- DM5.typ | 2 +- qcs.typ | 2 +- 5 files changed, 10 insertions(+), 10 deletions(-) diff --git a/DM2.typ b/DM2.typ index 13e5954..9d712b0 100644 --- a/DM2.typ +++ b/DM2.typ @@ -10,7 +10,7 @@ We want to *simplify* the following circuit: #{ - import "@preview/quill:0.4.0": * + import "@preview/quill:0.5.0": * quantum-circuit( lstick($|v_0〉$), $H$, ctrl(1), $H$, [\ ], @@ -21,7 +21,7 @@ We want to *simplify* the following circuit: The gates #{ - import "@preview/quill:0.4.0": * + import "@preview/quill:0.5.0": * quantum-circuit( lstick($$), $H$, rstick($$), [\ ], @@ -50,7 +50,7 @@ Which gives $cases( )$ that corresponds to an *inversed CNOT* that we can denote: #{ - import "@preview/quill:0.4.0": * + import "@preview/quill:0.5.0": * quantum-circuit( lstick($|v_0〉$), targ(), rstick($$), [\ ], @@ -66,7 +66,7 @@ Using only $2^n$ queries, all queries could have the same value with $f$ balance In the *quantum version*, we may use the following circuit: #{ - import "@preview/quill:0.4.0": * + import "@preview/quill:0.5.0": * quantum-circuit( lstick($|0〉$), $H$, mqgate($U_f$, n:4), $H$, meter(), setwire(2), rstick($$), [\ ], diff --git a/DM3.typ b/DM3.typ index 270b490..4b8ba0a 100644 --- a/DM3.typ +++ b/DM3.typ @@ -23,7 +23,7 @@ ), title: "Assignment", ([ - + Starting from state $ket(Phi)= 1/sqrt(2)(ket(00)+ket(11))$, is it true that for any basis ($ket(v_0)$, ket(v_1)), Alice and Bob will get the same outcome ? + + Starting from state $ket(Phi)= 1/sqrt(2)(ket(00)+ket(11))$, is it true that for any basis ($ket(v_0), ket(v_1)$), Alice and Bob will get the same outcome ? + Show that, for the state $1/sqrt(2)(ket(01)-ket(10))$, the outcome of Alice and Bob are opposite in any basis ($ket(v_0), ket(v_1)$) ]), ) diff --git a/DM4.typ b/DM4.typ index 9ed9c35..3e86054 100644 --- a/DM4.typ +++ b/DM4.typ @@ -26,7 +26,7 @@ + $"CNOT"[3,1]$ corresponds to the following circuit: #{ - import "@preview/quill:0.4.0": * + import "@preview/quill:0.5.0": * quantum-circuit( lstick($v_0$), 1, targ(), 2, rstick($$), [\ ], @@ -54,7 +54,7 @@ Let $A=1/sqrt(2) mat(-i,-1;1,i)$ and $B=mat(0,1;-1,0)$. Which 2-qubit gate can you apply on the first qubits at the end of the circuit #{ - import "@preview/quill:0.4.0": * + import "@preview/quill:0.5.0": * quantum-circuit( lstick($$), ctrl(2), 1, ctrl(2), 1, [\ ], @@ -80,7 +80,7 @@ Let $D = i I_2$. Then, $C mat(I_2,0,0,0;0,I_2,0,0;0,0,I_2,0;0,0,0,D) = "Toffoli" Which corresponds to the following circuit: #{ - import "@preview/quill:0.4.0": * + import "@preview/quill:0.5.0": * quantum-circuit( lstick($$), ctrl(2), 1, ctrl(2), 1, [\ ], diff --git a/DM5.typ b/DM5.typ index 9f100bf..176bde8 100644 --- a/DM5.typ +++ b/DM5.typ @@ -17,7 +17,7 @@ The phase estimation circuit described in class is: #{ - import "@preview/quill:0.4.0": * + import "@preview/quill:0.5.0": * quantum-circuit( lstick($ket(0)$), $H$, slice(label: $ket(Phi_0)$), ctrl(3, show-dot: false), diff --git a/qcs.typ b/qcs.typ index 806704b..9648440 100644 --- a/qcs.typ +++ b/qcs.typ @@ -1,4 +1,4 @@ -#import "@preview/showybox:2.0.1": showybox +#import "@preview/showybox:2.0.3": showybox #import "@preview/physica:0.9.3": * #let question(title, content) = {