Update dependencies

This commit is contained in:
augustin64 2024-11-30 10:26:49 +01:00
parent 04b0bfb625
commit 7e70fb58ae
5 changed files with 10 additions and 10 deletions

View File

@ -10,7 +10,7 @@
We want to *simplify* the following circuit: We want to *simplify* the following circuit:
#{ #{
import "@preview/quill:0.4.0": * import "@preview/quill:0.5.0": *
quantum-circuit( quantum-circuit(
lstick($|v_0〉$), $H$, ctrl(1), $H$, [\ ], lstick($|v_0〉$), $H$, ctrl(1), $H$, [\ ],
@ -21,7 +21,7 @@ We want to *simplify* the following circuit:
The gates The gates
#{ #{
import "@preview/quill:0.4.0": * import "@preview/quill:0.5.0": *
quantum-circuit( quantum-circuit(
lstick($$), $H$, rstick($$), [\ ], lstick($$), $H$, rstick($$), [\ ],
@ -50,7 +50,7 @@ Which gives $cases(
)$ that corresponds to an *inversed CNOT* that we can denote: )$ that corresponds to an *inversed CNOT* that we can denote:
#{ #{
import "@preview/quill:0.4.0": * import "@preview/quill:0.5.0": *
quantum-circuit( quantum-circuit(
lstick($|v_0〉$), targ(), rstick($$), [\ ], lstick($|v_0〉$), targ(), rstick($$), [\ ],
@ -66,7 +66,7 @@ Using only $2^n$ queries, all queries could have the same value with $f$ balance
In the *quantum version*, we may use the following circuit: In the *quantum version*, we may use the following circuit:
#{ #{
import "@preview/quill:0.4.0": * import "@preview/quill:0.5.0": *
quantum-circuit( quantum-circuit(
lstick($|0〉$), $H$, mqgate($U_f$, n:4), $H$, meter(), setwire(2), rstick($$), [\ ], lstick($|0〉$), $H$, mqgate($U_f$, n:4), $H$, meter(), setwire(2), rstick($$), [\ ],

View File

@ -23,7 +23,7 @@
), ),
title: "Assignment", title: "Assignment",
([ ([
+ Starting from state $ket(Phi)= 1/sqrt(2)(ket(00)+ket(11))$, is it true that for any basis ($ket(v_0)$, ket(v_1)), Alice and Bob will get the same outcome ? + Starting from state $ket(Phi)= 1/sqrt(2)(ket(00)+ket(11))$, is it true that for any basis ($ket(v_0), ket(v_1)$), Alice and Bob will get the same outcome ?
+ Show that, for the state $1/sqrt(2)(ket(01)-ket(10))$, the outcome of Alice and Bob are opposite in any basis ($ket(v_0), ket(v_1)$) + Show that, for the state $1/sqrt(2)(ket(01)-ket(10))$, the outcome of Alice and Bob are opposite in any basis ($ket(v_0), ket(v_1)$)
]), ]),
) )

View File

@ -26,7 +26,7 @@
+ $"CNOT"[3,1]$ corresponds to the following circuit: + $"CNOT"[3,1]$ corresponds to the following circuit:
#{ #{
import "@preview/quill:0.4.0": * import "@preview/quill:0.5.0": *
quantum-circuit( quantum-circuit(
lstick($v_0$), 1, targ(), 2, rstick($$), [\ ], lstick($v_0$), 1, targ(), 2, rstick($$), [\ ],
@ -54,7 +54,7 @@
Let $A=1/sqrt(2) mat(-i,-1;1,i)$ and $B=mat(0,1;-1,0)$. Let $A=1/sqrt(2) mat(-i,-1;1,i)$ and $B=mat(0,1;-1,0)$.
Which 2-qubit gate can you apply on the first qubits at the end of the circuit Which 2-qubit gate can you apply on the first qubits at the end of the circuit
#{ #{
import "@preview/quill:0.4.0": * import "@preview/quill:0.5.0": *
quantum-circuit( quantum-circuit(
lstick($$), ctrl(2), 1, ctrl(2), 1, [\ ], lstick($$), ctrl(2), 1, ctrl(2), 1, [\ ],
@ -80,7 +80,7 @@ Let $D = i I_2$. Then, $C mat(I_2,0,0,0;0,I_2,0,0;0,0,I_2,0;0,0,0,D) = "Toffoli"
Which corresponds to the following circuit: Which corresponds to the following circuit:
#{ #{
import "@preview/quill:0.4.0": * import "@preview/quill:0.5.0": *
quantum-circuit( quantum-circuit(
lstick($$), ctrl(2), 1, ctrl(2), 1, [\ ], lstick($$), ctrl(2), 1, ctrl(2), 1, [\ ],

View File

@ -17,7 +17,7 @@
The phase estimation circuit described in class is: The phase estimation circuit described in class is:
#{ #{
import "@preview/quill:0.4.0": * import "@preview/quill:0.5.0": *
quantum-circuit( quantum-circuit(
lstick($ket(0)$), $H$, slice(label: $ket(Phi_0)$), ctrl(3, show-dot: false), lstick($ket(0)$), $H$, slice(label: $ket(Phi_0)$), ctrl(3, show-dot: false),

View File

@ -1,4 +1,4 @@
#import "@preview/showybox:2.0.1": showybox #import "@preview/showybox:2.0.3": showybox
#import "@preview/physica:0.9.3": * #import "@preview/physica:0.9.3": *
#let question(title, content) = { #let question(title, content) = {