190 lines
5.4 KiB
Python
190 lines
5.4 KiB
Python
"""
|
|
Try some models and see what they look like
|
|
Following this die could help https://en.wikichip.org/w/images/4/48/E5_v4_LCC.png
|
|
Using the following naming convention:
|
|
|
|
------
|
|
0 7
|
|
1 6
|
|
2 5
|
|
3 4
|
|
------
|
|
"""
|
|
import matplotlib.pyplot as plt
|
|
import seaborn as sns
|
|
import pandas as pd
|
|
import numpy as np
|
|
import itertools
|
|
import os
|
|
|
|
nb_cores = 8
|
|
nb_slices = 8
|
|
num_core = nb_cores
|
|
|
|
cores = list(range(nb_cores))
|
|
slices = list(range(nb_slices))
|
|
|
|
img_dir = os.getenv("PWD")+"/"
|
|
def plot(filename, g=None):
|
|
if g is not None:
|
|
g.savefig(img_dir + filename)
|
|
else:
|
|
plt.savefig(img_dir + filename)
|
|
# tikzplotlib.save(
|
|
# img_dir+filename+".tex",
|
|
# axis_width=r'0.175\textwidth',
|
|
# axis_height=r'0.25\textwidth'
|
|
# )
|
|
print(img_dir + filename, "saved")
|
|
plt.close()
|
|
|
|
def ring_distance(x0, x1):
|
|
"""
|
|
return (a, b) where `a` is the core distance and `b` the larger "ring step"
|
|
it is possible that going from 0->7 costs one more than 3->4
|
|
"""
|
|
dist = abs(x0-x1)
|
|
if x0 // (num_core/2) != x1 // (num_core/2):
|
|
# côté du coeur différent
|
|
return min((num_core-1-dist, 2), (dist-1, 1))
|
|
else:
|
|
return dist, 0
|
|
|
|
def slice_msg_distance(source, dest):
|
|
"""
|
|
Si l'expéditeur est à l'extrémité d'une des lignes, il envoie toujours dans le même sens
|
|
(vers toute sa ligne d'abord), sinon, il prend le chemin le plus court
|
|
le bonus correspond au fait que 0->7 puisse coûter 1 de plus que 3->4
|
|
"""
|
|
dist = abs(source-dest)
|
|
if source // (num_core/2) == dest // (num_core/2):
|
|
return (dist, 0)
|
|
|
|
# Pour aller de l'autre côté
|
|
up, down = (num_core-1-dist, 2), (dist-1, 1)
|
|
if source in [0, 7]:
|
|
return down
|
|
if source in [3, 4] or source in [2, 5]:
|
|
return up
|
|
if source in [1, 6]:
|
|
return min(up, down)
|
|
|
|
raise IndexError
|
|
|
|
def ha_dist(core, is_QPI):
|
|
"""
|
|
distance to Home Agent
|
|
"""
|
|
if is_QPI:
|
|
if core < 4:
|
|
return core, 0
|
|
return 7-core, 1 # +1 for PCI
|
|
|
|
if core < 4:
|
|
return 3-core, 0
|
|
return core-4, 0
|
|
|
|
def cclockwise_dist(source, dest):
|
|
base = (dest+8-source)%8
|
|
side_jump = 0
|
|
if source < 4 and dest >= 4:
|
|
side_jump = 1
|
|
elif source >= 4 and dest < 4:
|
|
side_jump = 2
|
|
return base, side_jump
|
|
|
|
def cclockwise_ha_dist(core, is_QPI):
|
|
"""
|
|
counter-clockwise distance to Home Agent
|
|
"""
|
|
if is_QPI:
|
|
return cclockwise_dist(core, 7)
|
|
return cclockwise_dist(core, 3)
|
|
|
|
def no_QPI_dist(source, dest):
|
|
"""
|
|
Path not using QPI hop
|
|
"""
|
|
return abs(source-dest), 1 if source // 4 != dest //4 else 0
|
|
|
|
|
|
def miss():
|
|
"""
|
|
- ini : initial cost
|
|
- core_step : cost to go from one core to the following (eg 0 to 1)
|
|
- ring_step : cost to go from one line to the other (eg 0 to 7)
|
|
|
|
Issue: on a same socket, we observe always the first 4 or last 4 patterns, but not mixed
|
|
"""
|
|
def miss_topo(main_core, slice, i, c, l, k):
|
|
x, y, z = slice_msg_distance(main_core, slice)
|
|
return i+c*x+l*y+k*z
|
|
|
|
ini, core_step, ring_step, other_ring_step = 4, 1, 5, 2
|
|
fig, axs = plt.subplots(nrows=1, ncols=8, figsize=(15, 5))
|
|
|
|
for i, slice in enumerate(range(8)):
|
|
axs[i].plot(cores, [miss_topo(main_core, slice, ini, core_step, ring_step, other_ring_step) for main_core in cores], "ro")
|
|
axs[i].set_title(f"slice_group = {slice}")
|
|
axs[i].set_ylabel("clflush_miss_n")
|
|
axs[i].set_xlabel("main_core_fixed")
|
|
axs[i].set_ylim([0, 25])
|
|
|
|
plt.tight_layout()
|
|
plt.show()
|
|
|
|
|
|
def hit():
|
|
"""
|
|
- ini : initial cost
|
|
- core_step : cost to go from one core to the following (eg 0 to 1)
|
|
- ring_step : cost to go from one line to the other (eg 0 to 7)
|
|
|
|
Issue: on a same socket, we observe always the first 4 or last 4 patterns, but not mixed
|
|
"""
|
|
def hit_topo(main, helper, slice_g, i, c, l):
|
|
helper = helper%8
|
|
|
|
main_slice_local = slice_msg_distance(slice_g, main)
|
|
slice_QPI = cclockwise_dist(0, slice_g) # clockwise
|
|
QPI_slice_r = cclockwise_dist(0, slice_g)
|
|
slice_r_helper = slice_msg_distance(slice_g, helper)
|
|
|
|
costs = (main_slice_local[0]+slice_QPI[0]+QPI_slice_r[0]+slice_r_helper[0], main_slice_local[1]+slice_QPI[1]+QPI_slice_r[1]+slice_r_helper[1])
|
|
return ini+costs[0]*c+costs[1]*l
|
|
|
|
|
|
ini, core_step, ring_step = 12, 1, 1.5
|
|
fig, axs = plt.subplots(nrows=1, ncols=8, figsize=(15, 5))
|
|
|
|
# Define the ranges for x, y, z
|
|
main = range(8)
|
|
helper = range(8, 16)
|
|
slice_g = range(8)
|
|
|
|
# Create a DataFrame with all combinations of x, y, and z
|
|
data = pd.DataFrame([
|
|
(x, y, z) for z in slice_g
|
|
for x, y in itertools.product(main, helper)
|
|
],
|
|
columns=['main', 'helper', 'slice_group']
|
|
)
|
|
|
|
# Define the function
|
|
def my_function(x):
|
|
return hit_topo(x["main"], x["helper"], x["slice_group"], ini, core_step, ring_step)
|
|
|
|
# Apply the function to create a new column
|
|
data['predicted_hit'] = data.apply(my_function, axis=1)
|
|
|
|
fig = sns.FacetGrid(data, col="main", row="helper")
|
|
fig.map(sns.scatterplot, "slice_group", "predicted_hit", color="r", marker="+")
|
|
fig.map(sns.scatterplot, "slice_group", "predicted_hit", color="r", marker="x")
|
|
fig.set_titles(col_template="$A$ = {col_name}", row_template="$V$ = {row_name}")
|
|
|
|
plot("model_hit.png", g=fig)
|
|
|
|
|
|
|
|
hit()
|