Update show_models.py

This commit is contained in:
augustin64 2024-07-11 17:14:51 +02:00
parent af9324ae1b
commit 738f753248

View File

@ -11,17 +11,104 @@ Using the following naming convention:
------
"""
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
import numpy as np
import itertools
import os
nb_cores = 8
nb_slices = 8
num_core = nb_cores
cores = list(range(nb_cores))
slices = list(range(nb_slices))
img_dir = os.getenv("PWD")+"/"
def plot(filename, g=None):
if g is not None:
g.savefig(img_dir + filename)
else:
plt.savefig(img_dir + filename)
# tikzplotlib.save(
# img_dir+filename+".tex",
# axis_width=r'0.175\textwidth',
# axis_height=r'0.25\textwidth'
# )
print(img_dir + filename, "saved")
plt.close()
def ring_distance(x0, x1):
"""
return (a, b) where `a` is the core distance and `b` the larger "ring step"
it is possible that going from 0->7 costs one more than 3->4
"""
dist = abs(x0-x1)
if x0 // (num_core/2) != x1 // (num_core/2):
# côté du coeur différent
return min((num_core-1-dist, 2), (dist-1, 1))
else:
return dist, 0
def slice_msg_distance(source, dest):
"""
Si l'expéditeur est à l'extrémité d'une des lignes, il envoie toujours dans le même sens
(vers toute sa ligne d'abord), sinon, il prend le chemin le plus court
le bonus correspond au fait que 0->7 puisse coûter 1 de plus que 3->4
"""
dist = abs(source-dest)
if source // (num_core/2) == dest // (num_core/2):
return (dist, 0)
# Pour aller de l'autre côté
up, down = (num_core-1-dist, 2), (dist-1, 1)
if source in [0, 7]:
return down
if source in [3, 4] or source in [2, 5]:
return up
if source in [1, 6]:
return min(up, down)
raise IndexError
def ha_dist(core, is_QPI):
"""
distance to Home Agent
"""
if is_QPI:
if core < 4:
return core, 0
return 7-core, 1 # +1 for PCI
if core < 4:
return 3-core, 0
return core-4, 0
def cclockwise_dist(source, dest):
base = (dest+8-source)%8
side_jump = 0
if source < 4 and dest >= 4:
side_jump = 1
elif source >= 4 and dest < 4:
side_jump = 2
return base, side_jump
def cclockwise_ha_dist(core, is_QPI):
"""
counter-clockwise distance to Home Agent
"""
if is_QPI:
return cclockwise_dist(core, 7)
return cclockwise_dist(core, 3)
def no_QPI_dist(source, dest):
"""
Path not using QPI hop
"""
return abs(source-dest), 1 if source // 4 != dest //4 else 0
def hit_jump_ring():
def miss():
"""
- ini : initial cost
- core_step : cost to go from one core to the following (eg 0 to 1)
@ -29,26 +116,74 @@ def hit_jump_ring():
Issue: on a same socket, we observe always the first 4 or last 4 patterns, but not mixed
"""
def hit(helper, slice, i, c, l):
if helper // (nb_cores/2) != slice // (nb_cores/2):
mini, maxi = min(slice, helper), max(slice, helper)
return i+l+c*(min(mini+nb_cores-1-maxi, maxi-mini-1))
else:
return i+c*abs(slice-helper)
def miss_topo(main_core, slice, i, c, l, k):
x, y, z = slice_msg_distance(main_core, slice)
return i+c*x+l*y+k*z
ini, core_step, ring_step = 4, 1, 5
ini, core_step, ring_step, other_ring_step = 4, 1, 5, 2
fig, axs = plt.subplots(nrows=1, ncols=8, figsize=(15, 5))
for i, helper in enumerate(range(8)):
axs[i].plot(cores, [hit(helper, slice, ini, core_step, ring_step) for slice in slices], "ro")
axs[i].set_title(f"helper = {helper}")
axs[i].set_ylabel("clflush_hit_time")
axs[i].set_xlabel("slice_group")
axs[i].set_ylim([0, 20])
for i, slice in enumerate(range(8)):
axs[i].plot(cores, [miss_topo(main_core, slice, ini, core_step, ring_step, other_ring_step) for main_core in cores], "ro")
axs[i].set_title(f"slice_group = {slice}")
axs[i].set_ylabel("clflush_miss_n")
axs[i].set_xlabel("main_core_fixed")
axs[i].set_ylim([0, 25])
plt.tight_layout()
plt.show()
def hit():
"""
- ini : initial cost
- core_step : cost to go from one core to the following (eg 0 to 1)
- ring_step : cost to go from one line to the other (eg 0 to 7)
hit_jump_ring()
Issue: on a same socket, we observe always the first 4 or last 4 patterns, but not mixed
"""
def hit_topo(main, helper, slice_g, i, c, l):
helper = helper%8
main_slice_local = slice_msg_distance(slice_g, main)
slice_QPI = cclockwise_dist(0, slice_g) # clockwise
QPI_slice_r = cclockwise_dist(0, slice_g)
slice_r_helper = slice_msg_distance(slice_g, helper)
costs = (main_slice_local[0]+slice_QPI[0]+QPI_slice_r[0]+slice_r_helper[0], main_slice_local[1]+slice_QPI[1]+QPI_slice_r[1]+slice_r_helper[1])
return ini+costs[0]*c+costs[1]*l
ini, core_step, ring_step = 12, 1, 1.5
fig, axs = plt.subplots(nrows=1, ncols=8, figsize=(15, 5))
# Define the ranges for x, y, z
main = range(8)
helper = range(8, 16)
slice_g = range(8)
# Create a DataFrame with all combinations of x, y, and z
data = pd.DataFrame([
(x, y, z) for z in slice_g
for x, y in itertools.product(main, helper)
],
columns=['main', 'helper', 'slice_group']
)
# Define the function
def my_function(x):
return hit_topo(x["main"], x["helper"], x["slice_group"], ini, core_step, ring_step)
# Apply the function to create a new column
data['predicted_hit'] = data.apply(my_function, axis=1)
fig = sns.FacetGrid(data, col="main", row="helper")
fig.map(sns.scatterplot, "slice_group", "predicted_hit", color="r", marker="+")
fig.map(sns.scatterplot, "slice_group", "predicted_hit", color="r", marker="x")
fig.set_titles(col_template="$A$ = {col_name}", row_template="$V$ = {row_name}")
plot("model_hit.png", g=fig)
hit()