Compare commits

..

3 Commits

Author SHA1 Message Date
c16a503828 Remove show_models.py 2024-07-11 17:22:38 +02:00
cb8615d064 Update .gitignore 2024-07-11 17:22:29 +02:00
436e336e0c Update analyse_medians.py 2024-07-11 17:22:10 +02:00
3 changed files with 133 additions and 274 deletions

2
.gitignore vendored
View File

@ -6,6 +6,7 @@
#Cargo.lock
# These are backup files generated by rustfmt
**/*.rs.bk
.vscode
bootimage-kernel.iso
bootimage-kerneliso
kernel.sym
@ -22,4 +23,5 @@ pxelinux.cfg
serial.out
memdisk
**/venv
**/.venv
cache_utils/results*/

View File

@ -213,23 +213,29 @@ def ha_dist(core, is_QPI):
"""
if is_QPI:
if core < 4:
return core
return 7-core
return core, 0
return 7-core, 1 # +1 for PCI
if core < 4:
return 3-core
return core-4
return 3-core, 0
return core-4, 0
def cclockwise_dist(source, dest):
base = (dest+8-source)%8
side_jump = 0
if source < 4 and dest >= 4:
side_jump = 1
elif source >= 4 and dest < 4:
side_jump = 2
return base, side_jump
def cclockwise_ha_dist(core, is_QPI):
"""
counter-clockwise distance to Home Agent
"""
if is_QPI:
return 7-core
if core < 4:
return 3-core
return 11-core
return cclockwise_dist(core, 7)
return cclockwise_dist(core, 3)
def miss_topology(main_core, slice_group, h, down_jump, top_jump, ini, ha_h):
core, ring = slice_msg_distance(slice_group, main_core%8)
@ -237,95 +243,81 @@ def miss_topology(main_core, slice_group, h, down_jump, top_jump, ini, ha_h):
side_jump = 0
side_jump += top_jump if ring == 2 else 0
side_jump += down_jump if ring == 1 else 0
return (cclockwise_ha_dist(slice_group, False)//2)*ha_h+h*core + side_jump + ini
return (cclockwise_ha_dist(slice_group, False))*ha_h+h*core + side_jump + ini
def miss_topology_df(x, h, down_jump, top_jump, ini, ha_h):
func = lambda x, h, down_jump, top_jump, ini, ha_h: miss_topology(x["main_core_fixed"], x["slice_group"], h, down_jump, top_jump, ini, ha_h)
return x.apply(func, args=(h, down_jump, top_jump, ini, ha_h), axis=1)
def remote_hit_topology(main_core, helper_core, slice_group, C, h, H):
core0, ring0, _ = slice_msg_distance(main_core, slice_group)
core1, ring1, _ = slice_msg_distance(helper_core, slice_group)
return C + h*(core0+core1) + H*(ring0+ring1)
def remote_hit_topology(main_core, helper_core, slice_group, const, core_jump, HA_jump):
"""
main_core
-> local_slice
-> remote_slice
-> helper_core
-> remote_slice
-> local_slice
-> main_core
"""
if main_core // 8 == helper_core // 8:
print("Can only do hit predictions for different socket", file=sys.stderr)
raise NotImplementedError
def remote_hit_topology_df(x, C, h, H):
func = lambda x, C, h, H: remote_hit_topology(x["main_core_fixed"], x["helper_core_fixed"], x["slice_group"], C, h, H)
return x.apply(func, args=(C, h, H), axis=1)
helper, main = helper_core%8, main_core%8
main_slice_local = slice_msg_distance(slice_group, main)
slice_QPI = cclockwise_dist(0, slice_group) # clockwise
QPI_slice_r = cclockwise_dist(0, slice_group)
slice_r_helper = slice_msg_distance(slice_group, helper)
costs = (main_slice_local[0]+slice_QPI[0]+QPI_slice_r[0]+slice_r_helper[0], main_slice_local[1]+slice_QPI[1]+QPI_slice_r[1]+slice_r_helper[1])
return const+costs[0]*core_jump+costs[1]*HA_jump # may need some adjustments
def remote_hit_topology_df(x, const, core_jump, HA_jump):
func = lambda x, const, core_jump, HA_jump: remote_hit_topology(x["main_core_fixed"], x["helper_core_fixed"], x["slice_group"], const, core_jump, HA_jump)
return x.apply(func, args=(const, core_jump, HA_jump), axis=1)
def do_predictions(df):
def plot_predicted_topo(col, row, x_ax, target, pred, df=df):
title_letter = {
titles = {
"main_core_fixed": "A",
"helper_core_fixed": "V",
"slice_group": "S"
}.get(col, col[0])
"slice_group": "S",
None: "None"
}
figure_A0 = sns.FacetGrid(df, col=col, row=row)
figure_A0.map(sns.scatterplot, x_ax, pred, color="r")
figure_A0.map(sns.scatterplot, x_ax, target, color="g", marker="+")
figure_A0.set_titles(col_template="$"+title_letter+"$ = {col_name}")
figure_A0.map(sns.scatterplot, x_ax, target, color="g")
figure_A0.map(sns.scatterplot, x_ax, pred, color="r", marker="+")
figure_A0.set_titles(
col_template="$"+titles.get(col, col[0])+"$ = {col_name}",
row_template="$"+titles.get(row, row[0])+"$ = {row_name}"
)
plot(f"medians_{pred}_{col}.png")
values = []
main_socket, helper_socket = 0, 0
dfc = df[(df["main_socket"] == main_socket) & (df["helper_socket"] == helper_socket)]
cores = sorted(list(dfc["main_core_fixed"].unique()))
slices = sorted(list(dfc["slice_group"].unique()))
res_miss = optimize.curve_fit(
miss_topology_df, dfc[["main_core_fixed", "slice_group"]], dfc["clflush_miss_n"]
)
print("Miss topology:")
print(res_miss)
values.append(res_miss[0])
dfc["predicted_miss"] = miss_topology_df(dfc, *(res_miss[0]))
plot_predicted_topo("slice_group", None, "main_core_fixed", "clflush_miss_n", "predicted_miss", df=dfc)
plot_predicted_topo("main_core_fixed", None, "slice_group", "clflush_miss_n", "predicted_miss", df=dfc)
for slice_ in slices:
dfc = df[(df["slice_group"] == slice_) & (df["main_socket"] == main_socket) & (df["helper_socket"] == helper_socket)]
res_miss = optimize.curve_fit(
miss_topology_df, dfc[["main_core_fixed", "slice_group"]], dfc["clflush_miss_n"]
)
values.append(res_miss[0])
dfc[f"predicted_miss_{slice_}"] = miss_topology_df(dfc, *(res_miss[0]))
plot_predicted_topo("slice_group", None, "main_core_fixed", "clflush_miss_n", f"predicted_miss_{slice_}", df=dfc)
print(list(values[0]))
print()
for i in values[1:]:
print(list(i))
values = []
for core in cores:
dfc = df[(df["main_core_fixed"] == core) & (df["main_socket"] == main_socket) & (df["helper_socket"] == helper_socket)]
res_miss = optimize.curve_fit(
miss_topology_df, dfc[["main_core_fixed", "slice_group"]], dfc["clflush_miss_n"]
)
values.append(res_miss[0])
dfc[f"predicted_miss_core{core}"] = miss_topology_df(dfc, *(res_miss[0]))
plot_predicted_topo("main_core_fixed", None, "slice_group", "clflush_miss_n", f"predicted_miss_core{core}", df=dfc)
for i in values:
print(list(i))
return
main_socket, helper_socket = 0, 1
dfc = df[(df["main_socket"] == main_socket) & (df["helper_socket"] == helper_socket)]
res_remote_hit = optimize.curve_fit(
remote_hit_topology_df, df[["main_core_fixed", "helper_core_fixed", "slice_group"]], df["clflush_remote_hit"]
remote_hit_topology_df, dfc[["main_core_fixed", "helper_core_fixed", "slice_group"]], dfc["clflush_remote_hit"]
)
print("Remote hit topology:")
print(res_remote_hit)
df["diff_miss"] = df["clflush_miss_n"] - df["predicted_miss"]
facet_grid(
df, None, "main_core_fixed", "slice_group",
@ -339,10 +331,20 @@ def do_predictions(df):
shown=["diff_miss"],
separate_hthreads=True
)
dfc["predicted_remote_hit"] = remote_hit_topology_df(dfc, *(res_remote_hit[0]))
plot_predicted_topo("slice_group", "helper_core_fixed", "main_core_fixed", "clflush_remote_hit", "predicted_remote_hit", df=dfc)
plot_predicted_topo("main_core_fixed", "slice_group", "helper_core_fixed", "clflush_remote_hit", "predicted_remote_hit", df=dfc)
plot_predicted_topo("helper_core_fixed", "main_core_fixed", "slice_group", "clflush_remote_hit", "predicted_remote_hit", df=dfc)
# df["predicted_remote_hit"] = remote_hit_topology_df(df, *(res_remote_hit[0]))
# plot_predicted_topo("slice_group", "helper_core_fixed", "main_core_fixed", "clflush_remote_hit", "predicted_remote_hit")
# plot_predicted_topo("main_core_fixed", "helper_core_fixed", "slice_group", "clflush_remote_hit", "predicted_remote_hit")
for col in ["slice_group", "helper_core_fixed", "main_core_fixed"]:
for val in sorted(list(dfc[col].unique())):
df_temp = dfc[(dfc[col] == val)]
res_remote_hit = optimize.curve_fit(
remote_hit_topology_df, df_temp[["main_core_fixed", "helper_core_fixed", "slice_group"]], df_temp["clflush_remote_hit"]
)
df_temp[f"predicted_remote_hit_{col}={val}"] = remote_hit_topology_df(df_temp, *(res_remote_hit[0]))
plot_predicted_topo("slice_group", "helper_core_fixed", "main_core_fixed", "clflush_remote_hit", f"predicted_remote_hit_{col}={val}", df=df_temp)
plot_predicted_topo("main_core_fixed", "helper_core_fixed", "slice_group", "clflush_remote_hit", f"predicted_remote_hit_{col}={val}", df=df_temp)
@ -374,6 +376,7 @@ def facet_grid(
colors=["y", "r", "g", "b"],
separate_hthreads=False,
title=None,
letters=None
):
"""
Creates a facet grid showing all points
@ -400,6 +403,10 @@ def facet_grid(
else:
grid.map(draw_fn, third, el, color=colors[i % len(colors)], marker='+')
if letters is not None:
grid.set_titles(col_template="$"+letters[0]+"$ = {row_name}", row_template="$"+letters[1]+"$ = {col_name}")
if title is not None:
plot(title, g=grid)
return grid
@ -465,27 +472,66 @@ if args.rslice:
rslice()
do_predictions(stats)
#all_facets(stats, shown=["clflush_remote_hit"], colors=["r"], pre="hit")
#all_facets(stats, shown=["clflush_miss_n"], colors=["b"], pre="miss")
all_facets(stats, shown=["clflush_remote_hit"], colors=["r"], pre="hit_")
all_facets(stats, shown=["clflush_miss_n"], colors=["b"], pre="miss_")
#df=stats
#for m, h, s in itertools.product((0, 1), (0, 1), df["slice_group"].unique()):
# dfc = df[(df["main_socket"] == m) & (df["main_core_fixed"]%8é == s) & (df["helper_socket"] == h)]
#
# grid = sns.FacetGrid(dfc, row=None, col=None)
# grid.map(sns.scatterplot, "slice_group", "clflush_miss_n", marker="+")
#
# plot(f"miss_m{m}h{h}m{s}", g=grid)
def compare_facing():
df=stats
for m, h, s in itertools.product((0, 1), (0, 1), df["slice_group"].unique()):
dfc = df[(df["main_socket"] == m) & (df["main_core_fixed"]%8 == s) & (df["helper_socket"] == h)]
grid = sns.FacetGrid(dfc, row=None, col=None)
grid.map(sns.scatterplot, "slice_group", "clflush_miss_n", marker="+")
plot(f"miss_m{m}h{h}m{s}", g=grid)
#with Pool(8) as pool:
# pool.starmap(
# do_facet,
# itertools.product(
# stats["main_socket"].unique(),
# stats["helper_socket"].unique(),
# (False, ),
# ("hit", "miss")
# )
# )
def isolate_sockets():
with Pool(8) as pool:
pool.starmap(
do_facet,
itertools.product(
stats["main_socket"].unique(),
stats["helper_socket"].unique(),
(False, ),
("hit", "miss")
)
)
def superpose_sockets():
for main, same_socket in itertools.product(sorted(stats["main_core_fixed"].unique()), (True, False)):
df = stats[
(stats["slice_group"] == (main%8))
& (stats["main_core_fixed"] == main)
& ((stats["main_socket"] == stats["helper_socket"]) == same_socket)
]
ax = sns.scatterplot(df, x="helper_core_fixed", y="clflush_remote_hit", marker="+", color="r")
ax.set_title(f"$S = {main%8}, V = {main}$")
plot(f"hit_{same_socket}_main{main:02d}.png")
df = stats[
(stats["slice_group"] == (stats["main_core_fixed"]%8))
& ((stats["main_core_fixed"]%8) == (stats["helper_core_fixed"]%8))
& (stats["main_socket"] != stats["helper_socket"])
]
ax = sns.scatterplot(df, x="slice_group", y="clflush_remote_hit", marker="+", color="r")
plot(f"hit_same_slice.png")
stats["main_core_nosock"] = stats["main_core_fixed"]%8
stats["helper_core_nosock"] = stats["helper_core_fixed"]%8
facet_grid(
stats[(stats["main_socket"] != stats["helper_socket"])], "helper_core_nosock", "main_core_nosock", "slice_group",
title=f"hit_facet_slice_diff_socket.png",
separate_hthreads=True,
shown=["clflush_remote_hit"],
letters="VA"
)
facet_grid(
stats[(stats["main_socket"] == stats["helper_socket"])], "helper_core_nosock", "main_core_nosock", "slice_group",
title=f"hit_facet_slice_same_socket.png",
separate_hthreads=True,
letters="VA",
shown=["clflush_remote_hit"]
)

View File

@ -1,189 +0,0 @@
"""
Try some models and see what they look like
Following this die could help https://en.wikichip.org/w/images/4/48/E5_v4_LCC.png
Using the following naming convention:
------
0 7
1 6
2 5
3 4
------
"""
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
import numpy as np
import itertools
import os
nb_cores = 8
nb_slices = 8
num_core = nb_cores
cores = list(range(nb_cores))
slices = list(range(nb_slices))
img_dir = os.getenv("PWD")+"/"
def plot(filename, g=None):
if g is not None:
g.savefig(img_dir + filename)
else:
plt.savefig(img_dir + filename)
# tikzplotlib.save(
# img_dir+filename+".tex",
# axis_width=r'0.175\textwidth',
# axis_height=r'0.25\textwidth'
# )
print(img_dir + filename, "saved")
plt.close()
def ring_distance(x0, x1):
"""
return (a, b) where `a` is the core distance and `b` the larger "ring step"
it is possible that going from 0->7 costs one more than 3->4
"""
dist = abs(x0-x1)
if x0 // (num_core/2) != x1 // (num_core/2):
# côté du coeur différent
return min((num_core-1-dist, 2), (dist-1, 1))
else:
return dist, 0
def slice_msg_distance(source, dest):
"""
Si l'expéditeur est à l'extrémité d'une des lignes, il envoie toujours dans le même sens
(vers toute sa ligne d'abord), sinon, il prend le chemin le plus court
le bonus correspond au fait que 0->7 puisse coûter 1 de plus que 3->4
"""
dist = abs(source-dest)
if source // (num_core/2) == dest // (num_core/2):
return (dist, 0)
# Pour aller de l'autre côté
up, down = (num_core-1-dist, 2), (dist-1, 1)
if source in [0, 7]:
return down
if source in [3, 4] or source in [2, 5]:
return up
if source in [1, 6]:
return min(up, down)
raise IndexError
def ha_dist(core, is_QPI):
"""
distance to Home Agent
"""
if is_QPI:
if core < 4:
return core, 0
return 7-core, 1 # +1 for PCI
if core < 4:
return 3-core, 0
return core-4, 0
def cclockwise_dist(source, dest):
base = (dest+8-source)%8
side_jump = 0
if source < 4 and dest >= 4:
side_jump = 1
elif source >= 4 and dest < 4:
side_jump = 2
return base, side_jump
def cclockwise_ha_dist(core, is_QPI):
"""
counter-clockwise distance to Home Agent
"""
if is_QPI:
return cclockwise_dist(core, 7)
return cclockwise_dist(core, 3)
def no_QPI_dist(source, dest):
"""
Path not using QPI hop
"""
return abs(source-dest), 1 if source // 4 != dest //4 else 0
def miss():
"""
- ini : initial cost
- core_step : cost to go from one core to the following (eg 0 to 1)
- ring_step : cost to go from one line to the other (eg 0 to 7)
Issue: on a same socket, we observe always the first 4 or last 4 patterns, but not mixed
"""
def miss_topo(main_core, slice, i, c, l, k):
x, y, z = slice_msg_distance(main_core, slice)
return i+c*x+l*y+k*z
ini, core_step, ring_step, other_ring_step = 4, 1, 5, 2
fig, axs = plt.subplots(nrows=1, ncols=8, figsize=(15, 5))
for i, slice in enumerate(range(8)):
axs[i].plot(cores, [miss_topo(main_core, slice, ini, core_step, ring_step, other_ring_step) for main_core in cores], "ro")
axs[i].set_title(f"slice_group = {slice}")
axs[i].set_ylabel("clflush_miss_n")
axs[i].set_xlabel("main_core_fixed")
axs[i].set_ylim([0, 25])
plt.tight_layout()
plt.show()
def hit():
"""
- ini : initial cost
- core_step : cost to go from one core to the following (eg 0 to 1)
- ring_step : cost to go from one line to the other (eg 0 to 7)
Issue: on a same socket, we observe always the first 4 or last 4 patterns, but not mixed
"""
def hit_topo(main, helper, slice_g, i, c, l):
helper = helper%8
main_slice_local = slice_msg_distance(slice_g, main)
slice_QPI = cclockwise_dist(0, slice_g) # clockwise
QPI_slice_r = cclockwise_dist(0, slice_g)
slice_r_helper = slice_msg_distance(slice_g, helper)
costs = (main_slice_local[0]+slice_QPI[0]+QPI_slice_r[0]+slice_r_helper[0], main_slice_local[1]+slice_QPI[1]+QPI_slice_r[1]+slice_r_helper[1])
return ini+costs[0]*c+costs[1]*l
ini, core_step, ring_step = 12, 1, 1.5
fig, axs = plt.subplots(nrows=1, ncols=8, figsize=(15, 5))
# Define the ranges for x, y, z
main = range(8)
helper = range(8, 16)
slice_g = range(8)
# Create a DataFrame with all combinations of x, y, and z
data = pd.DataFrame([
(x, y, z) for z in slice_g
for x, y in itertools.product(main, helper)
],
columns=['main', 'helper', 'slice_group']
)
# Define the function
def my_function(x):
return hit_topo(x["main"], x["helper"], x["slice_group"], ini, core_step, ring_step)
# Apply the function to create a new column
data['predicted_hit'] = data.apply(my_function, axis=1)
fig = sns.FacetGrid(data, col="main", row="helper")
fig.map(sns.scatterplot, "slice_group", "predicted_hit", color="r", marker="+")
fig.map(sns.scatterplot, "slice_group", "predicted_hit", color="r", marker="x")
fig.set_titles(col_template="$A$ = {col_name}", row_template="$V$ = {row_name}")
plot("model_hit.png", g=fig)
hit()