tipe/src/cnn/update.c
2023-01-20 13:41:38 +01:00

173 lines
6.0 KiB
C

#include <stdio.h>
#include "include/update.h"
#include "include/struct.h"
void update_weights(Network* network, Network* d_network) {
int n = network->size;
int input_depth, input_width, output_depth, output_width, k_size;
Kernel* k_i;
Kernel* dk_i;
for (int i=0; i<(n-1); i++) {
k_i = network->kernel[i];
dk_i = d_network->kernel[i];
input_depth = network->depth[i];
input_width = network->width[i];
output_depth = network->depth[i+1];
output_width = network->width[i+1];
if (k_i->cnn) { // Convolution
Kernel_cnn* cnn = k_i->cnn;
Kernel_cnn* d_cnn = dk_i->cnn;
k_size = cnn->k_size;
for (int a=0; a<input_depth; a++) {
for (int b=0; b<output_depth; b++) {
for (int c=0; c<k_size; c++) {
for (int d=0; d<k_size; d++) {
cnn->w[a][b][c][d] -= network->learning_rate * d_cnn->d_w[a][b][c][d];
d_cnn->d_w[a][b][c][d] = 0;
}
}
}
}
} else if (k_i->nn) { // Full connection
if (k_i->linearisation == 0) { // Vecteur -> Vecteur
Kernel_nn* nn = k_i->nn;
Kernel_nn* d_nn = dk_i->nn;
for (int a=0; a<input_width; a++) {
for (int b=0; b<output_width; b++) {
nn->weights[a][b] -= network->learning_rate * d_nn->d_weights[a][b];
d_nn->d_weights[a][b] = 0;
}
}
} else { // Matrice -> vecteur
Kernel_nn* nn = k_i->nn;
Kernel_nn* d_nn = dk_i->nn;
int input_size = input_width*input_width*input_depth;
for (int a=0; a<input_size; a++) {
for (int b=0; b<output_width; b++) {
nn->weights[a][b] -= network->learning_rate * d_nn->d_weights[a][b];
d_nn->d_weights[a][b] = 0;
}
}
}
} else { // Pooling
(void)0; // Ne rien faire pour la couche pooling
}
}
}
void update_bias(Network* network, Network* d_network) {
int n = network->size;
int output_width, output_depth;
Kernel* k_i;
Kernel* dk_i;
for (int i=0; i<(n-1); i++) {
k_i = network->kernel[i];
dk_i = d_network->kernel[i];
output_width = network->width[i+1];
output_depth = network->depth[i+1];
if (k_i->cnn) { // Convolution
Kernel_cnn* cnn = k_i->cnn;
Kernel_cnn* d_cnn = dk_i->cnn;
for (int a=0; a<output_depth; a++) {
for (int b=0; b<output_width; b++) {
for (int c=0; c<output_width; c++) {
cnn->bias[a][b][c] -= network->learning_rate * d_cnn->d_bias[a][b][c];
d_cnn->d_bias[a][b][c] = 0;
}
}
}
} else if (k_i->nn) { // Full connection
Kernel_nn* nn = k_i->nn;
Kernel_nn* d_nn = dk_i->nn;
for (int a=0; a<output_width; a++) {
nn->bias[a] -= network->learning_rate * d_nn->d_bias[a];
d_nn->d_bias[a] = 0;
}
} else { // Pooling
(void)0; // Ne rien faire pour la couche pooling
}
}
}
void reset_d_weights(Network* network) {
int n = network->size;
int input_depth, input_width, output_depth, output_width;
Kernel* k_i;
Kernel* k_i_1;
for (int i=0; i<(n-1); i++) {
k_i = network->kernel[i];
k_i_1 = network->kernel[i+1];
input_depth = network->depth[i];
input_width = network->width[i];
output_depth = network->depth[i+1];
output_width = network->width[i+1];
if (k_i->cnn) { // Convolution
Kernel_cnn* cnn = k_i_1->cnn;
int k_size = cnn->k_size;
for (int a=0; a<input_depth; a++) {
for (int b=0; b<output_depth; b++) {
for (int c=0; c<k_size; c++) {
for (int d=0; d<k_size; d++) {
cnn->d_w[a][b][c][d] = 0;
}
}
}
}
} else if (k_i->nn) { // Full connection
if (k_i->linearisation == 0) { // Vecteur -> Vecteur
Kernel_nn* nn = k_i_1->nn;
for (int a=0; a<input_width; a++) {
for (int b=0; b<output_width; b++) {
nn->d_weights[a][b] = 0;
}
}
} else { // Matrice -> vecteur
Kernel_nn* nn = k_i_1->nn;
int input_size = input_width*input_width*input_depth;
for (int a=0; a<input_size; a++) {
for (int b=0; b<output_width; b++) {
nn->d_weights[a][b] = 0;
}
}
}
} else { // Pooling
(void)0; // Ne rien faire pour la couche pooling
}
}
}
void reset_d_bias(Network* network) {
int n = network->size;
int output_width, output_depth;
Kernel* k_i;
Kernel* k_i_1;
for (int i=0; i<(n-1); i++) {
k_i = network->kernel[i];
k_i_1 = network->kernel[i+1];
output_width = network->width[i+1];
output_depth = network->depth[i+1];
if (k_i->cnn) { // Convolution
Kernel_cnn* cnn = k_i_1->cnn;
for (int a=0; a<output_depth; a++) {
for (int b=0; b<output_width; b++) {
for (int c=0; c<output_width; c++) {
cnn->d_bias[a][b][c] = 0;
}
}
}
} else if (k_i->nn) { // Full connection
Kernel_nn* nn = k_i_1->nn;
for (int a=0; a<output_width; a++) {
nn->d_bias[a] = 0;
}
} else { // Pooling
(void)0; // Ne rien faire pour la couche pooling
}
}
}