2022-11-18 14:09:49 +01:00
|
|
|
#include <stdio.h>
|
2022-11-03 16:28:03 +01:00
|
|
|
|
2022-11-03 18:13:01 +01:00
|
|
|
#include "include/update.h"
|
|
|
|
#include "include/struct.h"
|
2022-11-03 16:28:03 +01:00
|
|
|
|
2023-01-20 13:41:38 +01:00
|
|
|
void update_weights(Network* network, Network* d_network) {
|
2022-11-03 16:28:03 +01:00
|
|
|
int n = network->size;
|
2022-11-15 12:50:38 +01:00
|
|
|
int input_depth, input_width, output_depth, output_width, k_size;
|
2022-11-03 16:28:03 +01:00
|
|
|
Kernel* k_i;
|
2022-11-18 14:09:49 +01:00
|
|
|
Kernel* dk_i;
|
2022-11-03 16:28:03 +01:00
|
|
|
for (int i=0; i<(n-1); i++) {
|
|
|
|
k_i = network->kernel[i];
|
2022-11-18 14:09:49 +01:00
|
|
|
dk_i = d_network->kernel[i];
|
2022-11-03 16:28:03 +01:00
|
|
|
input_depth = network->depth[i];
|
|
|
|
input_width = network->width[i];
|
|
|
|
output_depth = network->depth[i+1];
|
|
|
|
output_width = network->width[i+1];
|
|
|
|
|
|
|
|
if (k_i->cnn) { // Convolution
|
2022-11-15 12:58:00 +01:00
|
|
|
Kernel_cnn* cnn = k_i->cnn;
|
2022-11-18 14:09:49 +01:00
|
|
|
Kernel_cnn* d_cnn = dk_i->cnn;
|
2022-11-15 12:50:38 +01:00
|
|
|
k_size = cnn->k_size;
|
2022-11-03 16:28:03 +01:00
|
|
|
for (int a=0; a<input_depth; a++) {
|
|
|
|
for (int b=0; b<output_depth; b++) {
|
|
|
|
for (int c=0; c<k_size; c++) {
|
|
|
|
for (int d=0; d<k_size; d++) {
|
2023-01-20 13:41:38 +01:00
|
|
|
cnn->w[a][b][c][d] -= network->learning_rate * d_cnn->d_w[a][b][c][d];
|
2022-11-18 14:09:49 +01:00
|
|
|
d_cnn->d_w[a][b][c][d] = 0;
|
2022-11-03 16:28:03 +01:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} else if (k_i->nn) { // Full connection
|
2023-01-17 12:49:35 +01:00
|
|
|
if (k_i->linearisation == 0) { // Vecteur -> Vecteur
|
2022-11-15 12:50:38 +01:00
|
|
|
Kernel_nn* nn = k_i->nn;
|
2022-11-18 14:09:49 +01:00
|
|
|
Kernel_nn* d_nn = dk_i->nn;
|
2022-11-03 16:28:03 +01:00
|
|
|
for (int a=0; a<input_width; a++) {
|
|
|
|
for (int b=0; b<output_width; b++) {
|
2023-01-20 13:41:38 +01:00
|
|
|
nn->weights[a][b] -= network->learning_rate * d_nn->d_weights[a][b];
|
2022-11-18 14:09:49 +01:00
|
|
|
d_nn->d_weights[a][b] = 0;
|
2022-11-03 16:28:03 +01:00
|
|
|
}
|
|
|
|
}
|
|
|
|
} else { // Matrice -> vecteur
|
2022-11-15 12:50:38 +01:00
|
|
|
Kernel_nn* nn = k_i->nn;
|
2022-11-18 14:09:49 +01:00
|
|
|
Kernel_nn* d_nn = dk_i->nn;
|
2022-11-03 16:28:03 +01:00
|
|
|
int input_size = input_width*input_width*input_depth;
|
|
|
|
for (int a=0; a<input_size; a++) {
|
|
|
|
for (int b=0; b<output_width; b++) {
|
2023-01-20 13:41:38 +01:00
|
|
|
nn->weights[a][b] -= network->learning_rate * d_nn->d_weights[a][b];
|
2022-11-18 14:09:49 +01:00
|
|
|
d_nn->d_weights[a][b] = 0;
|
2022-11-03 16:28:03 +01:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} else { // Pooling
|
|
|
|
(void)0; // Ne rien faire pour la couche pooling
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2023-01-20 13:41:38 +01:00
|
|
|
void update_bias(Network* network, Network* d_network) {
|
2023-01-17 15:34:29 +01:00
|
|
|
|
2022-11-03 16:28:03 +01:00
|
|
|
int n = network->size;
|
|
|
|
int output_width, output_depth;
|
|
|
|
Kernel* k_i;
|
2022-11-18 14:09:49 +01:00
|
|
|
Kernel* dk_i;
|
2022-11-03 16:28:03 +01:00
|
|
|
for (int i=0; i<(n-1); i++) {
|
|
|
|
k_i = network->kernel[i];
|
2022-11-18 14:09:49 +01:00
|
|
|
dk_i = d_network->kernel[i];
|
2022-11-03 16:28:03 +01:00
|
|
|
output_width = network->width[i+1];
|
|
|
|
output_depth = network->depth[i+1];
|
|
|
|
|
|
|
|
if (k_i->cnn) { // Convolution
|
2022-11-15 12:50:38 +01:00
|
|
|
Kernel_cnn* cnn = k_i->cnn;
|
2022-11-18 14:09:49 +01:00
|
|
|
Kernel_cnn* d_cnn = dk_i->cnn;
|
2022-11-03 16:28:03 +01:00
|
|
|
for (int a=0; a<output_depth; a++) {
|
|
|
|
for (int b=0; b<output_width; b++) {
|
|
|
|
for (int c=0; c<output_width; c++) {
|
2023-01-20 13:41:38 +01:00
|
|
|
cnn->bias[a][b][c] -= network->learning_rate * d_cnn->d_bias[a][b][c];
|
2022-11-18 14:09:49 +01:00
|
|
|
d_cnn->d_bias[a][b][c] = 0;
|
2022-11-03 16:28:03 +01:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} else if (k_i->nn) { // Full connection
|
2022-11-15 12:50:38 +01:00
|
|
|
Kernel_nn* nn = k_i->nn;
|
2022-11-18 14:09:49 +01:00
|
|
|
Kernel_nn* d_nn = dk_i->nn;
|
2022-11-03 16:28:03 +01:00
|
|
|
for (int a=0; a<output_width; a++) {
|
2023-01-20 13:41:38 +01:00
|
|
|
nn->bias[a] -= network->learning_rate * d_nn->d_bias[a];
|
2022-11-18 14:09:49 +01:00
|
|
|
d_nn->d_bias[a] = 0;
|
2022-11-03 16:28:03 +01:00
|
|
|
}
|
|
|
|
} else { // Pooling
|
|
|
|
(void)0; // Ne rien faire pour la couche pooling
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void reset_d_weights(Network* network) {
|
|
|
|
int n = network->size;
|
|
|
|
int input_depth, input_width, output_depth, output_width;
|
|
|
|
Kernel* k_i;
|
|
|
|
Kernel* k_i_1;
|
|
|
|
for (int i=0; i<(n-1); i++) {
|
|
|
|
k_i = network->kernel[i];
|
|
|
|
k_i_1 = network->kernel[i+1];
|
|
|
|
input_depth = network->depth[i];
|
|
|
|
input_width = network->width[i];
|
|
|
|
output_depth = network->depth[i+1];
|
|
|
|
output_width = network->width[i+1];
|
|
|
|
|
|
|
|
if (k_i->cnn) { // Convolution
|
|
|
|
Kernel_cnn* cnn = k_i_1->cnn;
|
|
|
|
int k_size = cnn->k_size;
|
|
|
|
for (int a=0; a<input_depth; a++) {
|
|
|
|
for (int b=0; b<output_depth; b++) {
|
|
|
|
for (int c=0; c<k_size; c++) {
|
|
|
|
for (int d=0; d<k_size; d++) {
|
|
|
|
cnn->d_w[a][b][c][d] = 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} else if (k_i->nn) { // Full connection
|
2023-01-17 12:49:35 +01:00
|
|
|
if (k_i->linearisation == 0) { // Vecteur -> Vecteur
|
2022-11-03 16:28:03 +01:00
|
|
|
Kernel_nn* nn = k_i_1->nn;
|
|
|
|
for (int a=0; a<input_width; a++) {
|
|
|
|
for (int b=0; b<output_width; b++) {
|
|
|
|
nn->d_weights[a][b] = 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} else { // Matrice -> vecteur
|
|
|
|
Kernel_nn* nn = k_i_1->nn;
|
|
|
|
int input_size = input_width*input_width*input_depth;
|
|
|
|
for (int a=0; a<input_size; a++) {
|
|
|
|
for (int b=0; b<output_width; b++) {
|
|
|
|
nn->d_weights[a][b] = 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} else { // Pooling
|
|
|
|
(void)0; // Ne rien faire pour la couche pooling
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void reset_d_bias(Network* network) {
|
|
|
|
int n = network->size;
|
|
|
|
int output_width, output_depth;
|
|
|
|
Kernel* k_i;
|
|
|
|
Kernel* k_i_1;
|
|
|
|
for (int i=0; i<(n-1); i++) {
|
|
|
|
k_i = network->kernel[i];
|
|
|
|
k_i_1 = network->kernel[i+1];
|
|
|
|
output_width = network->width[i+1];
|
|
|
|
output_depth = network->depth[i+1];
|
|
|
|
|
|
|
|
if (k_i->cnn) { // Convolution
|
|
|
|
Kernel_cnn* cnn = k_i_1->cnn;
|
|
|
|
for (int a=0; a<output_depth; a++) {
|
|
|
|
for (int b=0; b<output_width; b++) {
|
|
|
|
for (int c=0; c<output_width; c++) {
|
|
|
|
cnn->d_bias[a][b][c] = 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} else if (k_i->nn) { // Full connection
|
|
|
|
Kernel_nn* nn = k_i_1->nn;
|
|
|
|
for (int a=0; a<output_width; a++) {
|
|
|
|
nn->d_bias[a] = 0;
|
|
|
|
}
|
|
|
|
} else { // Pooling
|
|
|
|
(void)0; // Ne rien faire pour la couche pooling
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|