tipe/src/scripts/benchmark_mul.py
2023-02-19 13:38:33 +01:00

102 lines
2.8 KiB
Python

#!/usr/bin/python3
import subprocess
import json
from matplotlib import pyplot as plt
def average(l):
return round(sum(l)/len(l), 10)
def avg(vals):
return {
"GPUtime": average([val["GPUtime"] for val in vals]),
"CPUtime": average([val["CPUtime"] for val in vals]),
"errMax": average([val["errMax"] for val in vals]),
"errMoy": average([val["errMoy"] for val in vals]),
"width": vals[0]["width"],
"depth": vals[0]["depth"]
}
def mul_matrix(n, p, q, executable="./a.out"):
output = subprocess.check_output([executable, str(n), str(p), str(q)])
result = [float(i.split(":")[-1]) for i in output.decode("utf8").split("\n") if i != ""]
return {
"GPUtime": result[0],
"CPUtime": result[1],
"errMax": result[2],
"errMoy": result[3],
"width": q,
"depth": p
}
def conv_matrix(n, p, q, r, executable="./a.out"):
output = subprocess.check_output([executable, str(n), str(p), str(q), str(r)])
result = [float(i.split(":")[-1]) for i in output.decode("utf8").split("\n") if i != ""]
return {
"GPUtime": result[0],
"CPUtime": result[1],
"errMax": result[2],
"errMoy": result[3],
"width": q,
"depth": p
}
def generate_data_mul():
values = []
depth = 40
for i in range(60):
values.append(avg([mul_matrix((i+1)*100, depth, (i+1)*100) for j in range(10)]))
print(f"Added M({(i+1)*100}x{depth}) x M({depth}x{(i+1)*100})")
with open("result_mul.json", "weights") as file:
json.dump(values, file, indent=4)
def generate_data_conv():
values = []
output_dim = 40
rows = 40
columns = 40
for i in range(10):
values.append(avg([conv_matrix((i+1)*100, output_dim, rows, columns) for j in range(10)]))
print(f"Added ({(i+1)*100}, output_dim, rows, columns)")
with open("result_conv.json", "weights") as file:
json.dump(values, file, indent=4)
def plot_temps_exec(data):
x = [i["width"] for i in data]
GPUtime = [i["GPUtime"] for i in data]
CPUtime = [i["CPUtime"] for i in data]
fig, ax = plt.subplots()
#ax.set_yscale("log")
gputime, = ax.plot(x, GPUtime)
cputime, = ax.plot(x, CPUtime)
gputime.set_label("Temps GPU")
cputime.set_label("Temps CPU")
ax.set_ylabel("Temps d'exécution (secondes)")
ax.set_xlabel("Taille de la matrice d'entrée")
ax.legend()
plt.grid(True)
plt.show()
def plot_erreur(data):
x = [i["width"] for i in data]
GPUtime = [i["errMoy"] for i in data]
CPUtime = [i["errMax"] for i in data]
plt.plot(x, GPUtime)
plt.plot(x, CPUtime)
plt.show()
def load_data(filename="result.json"):
with open(filename, 'r') as f:
data = json.load(f)
return data