#!/usr/bin/python3 import subprocess import json from matplotlib import pyplot as plt def average(l): return round(sum(l)/len(l), 10) def avg(vals): return { "GPUtime": average([val["GPUtime"] for val in vals]), "CPUtime": average([val["CPUtime"] for val in vals]), "errMax": average([val["errMax"] for val in vals]), "errMoy": average([val["errMoy"] for val in vals]), "width": vals[0]["width"], "depth": vals[0]["depth"] } def mul_matrix(n, p, q, executable="./a.out"): output = subprocess.check_output([executable, str(n), str(p), str(q)]) result = [float(i.split(":")[-1]) for i in output.decode("utf8").split("\n") if i != ""] return { "GPUtime": result[0], "CPUtime": result[1], "errMax": result[2], "errMoy": result[3], "width": q, "depth": p } def conv_matrix(n, p, q, r, executable="./a.out"): output = subprocess.check_output([executable, str(n), str(p), str(q), str(r)]) result = [float(i.split(":")[-1]) for i in output.decode("utf8").split("\n") if i != ""] return { "GPUtime": result[0], "CPUtime": result[1], "errMax": result[2], "errMoy": result[3], "width": q, "depth": p } def generate_data_mul(): values = [] depth = 40 for i in range(60): values.append(avg([mul_matrix((i+1)*100, depth, (i+1)*100) for j in range(10)])) print(f"Added M({(i+1)*100}x{depth}) x M({depth}x{(i+1)*100})") with open("result_mul.json", "weights") as file: json.dump(values, file, indent=4) def generate_data_conv(): values = [] output_dim = 40 rows = 40 columns = 40 for i in range(10): values.append(avg([conv_matrix((i+1)*100, output_dim, rows, columns) for j in range(10)])) print(f"Added ({(i+1)*100}, output_dim, rows, columns)") with open("result_conv.json", "weights") as file: json.dump(values, file, indent=4) def plot_temps_exec(data): x = [i["width"] for i in data] GPUtime = [i["GPUtime"] for i in data] CPUtime = [i["CPUtime"] for i in data] fig, ax = plt.subplots() #ax.set_yscale("log") gputime, = ax.plot(x, GPUtime) cputime, = ax.plot(x, CPUtime) gputime.set_label("Temps GPU") cputime.set_label("Temps CPU") ax.set_ylabel("Temps d'exécution (secondes)") ax.set_xlabel("Taille de la matrice d'entrée") ax.legend() plt.grid(True) plt.show() def plot_erreur(data): x = [i["width"] for i in data] GPUtime = [i["errMoy"] for i in data] CPUtime = [i["errMax"] for i in data] plt.plot(x, GPUtime) plt.plot(x, CPUtime) plt.show() def load_data(filename="result.json"): with open(filename, 'r') as f: data = json.load(f) return data