Change calloc to malloc

This commit is contained in:
julienChemillier 2023-01-25 12:00:21 +01:00
parent fe880f9aae
commit f4975e8812

View File

@ -148,7 +148,10 @@ void add_convolution(Network* network, int depth_output, int dim_output, int act
cnn->d_w[i][j] = (float**)malloc(sizeof(float*)*kernel_size); cnn->d_w[i][j] = (float**)malloc(sizeof(float*)*kernel_size);
for (int k=0; k < kernel_size; k++) { for (int k=0; k < kernel_size; k++) {
cnn->w[i][j][k] = (float*)malloc(sizeof(float)*kernel_size); cnn->w[i][j][k] = (float*)malloc(sizeof(float)*kernel_size);
cnn->d_w[i][j][k] = (float*)calloc(kernel_size, sizeof(float)); cnn->d_w[i][j][k] = (float*)malloc(sizeof(float)*kernel_size);
for (int l=0; l<kernel_size; l++) {
cnn->d_w[i][j][k][l] = 0;
}
} }
} }
} }
@ -159,7 +162,10 @@ void add_convolution(Network* network, int depth_output, int dim_output, int act
cnn->d_bias[i] = (float**)malloc(sizeof(float*)*bias_size); cnn->d_bias[i] = (float**)malloc(sizeof(float*)*bias_size);
for (int j=0; j < bias_size; j++) { for (int j=0; j < bias_size; j++) {
cnn->bias[i][j] = (float*)malloc(sizeof(float)*bias_size); cnn->bias[i][j] = (float*)malloc(sizeof(float)*bias_size);
cnn->d_bias[i][j] = (float*)calloc(bias_size, sizeof(float)); cnn->d_bias[i][j] = (float*)malloc(sizeof(float)*bias_size);
for (int k=0; k<bias_size; k++) {
cnn->d_bias[i][j][k] = 0;
}
} }
} }
int n_in = network->width[n-1]*network->width[n-1]*network->depth[n-1]; int n_in = network->width[n-1]*network->width[n-1]*network->depth[n-1];
@ -187,12 +193,18 @@ void add_dense(Network* network, int output_units, int activation) {
nn->input_units = input_units; nn->input_units = input_units;
nn->output_units = output_units; nn->output_units = output_units;
nn->bias = (float*)malloc(sizeof(float)*output_units); nn->bias = (float*)malloc(sizeof(float)*output_units);
nn->d_bias = (float*)calloc(output_units, sizeof(float)); nn->d_bias = (float*)malloc(sizeof(float)*output_units);
for (int i=0; i<output_units; i++) {
nn->d_bias[i] = 0;
}
nn->weights = (float**)malloc(sizeof(float*)*input_units); nn->weights = (float**)malloc(sizeof(float*)*input_units);
nn->d_weights = (float**)malloc(sizeof(float*)*input_units); nn->d_weights = (float**)malloc(sizeof(float*)*input_units);
for (int i=0; i < input_units; i++) { for (int i=0; i < input_units; i++) {
nn->weights[i] = (float*)malloc(sizeof(float)*output_units); nn->weights[i] = (float*)malloc(sizeof(float)*output_units);
nn->d_weights[i] = (float*)calloc(output_units, sizeof(float)); nn->d_weights[i] = (float*)malloc(sizeof(float)*output_units);
for (int j=0; j<output_units; j++) {
nn->d_weights[i][j] = 0;
}
} }
initialisation_1d_matrix(network->initialisation, nn->bias, output_units, input_units, output_units); initialisation_1d_matrix(network->initialisation, nn->bias, output_units, input_units, output_units);
initialisation_2d_matrix(network->initialisation, nn->weights, input_units, output_units, input_units, output_units); initialisation_2d_matrix(network->initialisation, nn->weights, input_units, output_units, input_units, output_units);
@ -220,12 +232,18 @@ void add_dense_linearisation(Network* network, int output_units, int activation)
nn->output_units = output_units; nn->output_units = output_units;
nn->bias = (float*)malloc(sizeof(float)*output_units); nn->bias = (float*)malloc(sizeof(float)*output_units);
nn->d_bias = (float*)calloc(output_units, sizeof(float)); nn->d_bias = (float*)malloc(sizeof(float)*output_units);
for (int i=0; i<output_units; i++) {
nn->d_bias[i] = 0;
}
nn->weights = (float**)malloc(sizeof(float*)*input_units); nn->weights = (float**)malloc(sizeof(float*)*input_units);
nn->d_weights = (float**)malloc(sizeof(float*)*input_units); nn->d_weights = (float**)malloc(sizeof(float*)*input_units);
for (int i=0; i < input_units; i++) { for (int i=0; i < input_units; i++) {
nn->weights[i] = (float*)malloc(sizeof(float)*output_units); nn->weights[i] = (float*)malloc(sizeof(float)*output_units);
nn->d_weights[i] = (float*)calloc(output_units, sizeof(float)); nn->d_weights[i] = (float*)malloc(sizeof(float)*output_units);
for (int j=0; j<output_units; j++) {
nn->d_weights[i][j] = 0;
}
} }
initialisation_1d_matrix(network->initialisation, nn->bias, output_units, input_units, output_units); initialisation_1d_matrix(network->initialisation, nn->bias, output_units, input_units, output_units);
initialisation_2d_matrix(network->initialisation, nn->weights, input_units, output_units, input_units, output_units); initialisation_2d_matrix(network->initialisation, nn->weights, input_units, output_units, input_units, output_units);