From f4975e8812626a669016458e8f6bf3da292b9130 Mon Sep 17 00:00:00 2001 From: julienChemillier Date: Wed, 25 Jan 2023 12:00:21 +0100 Subject: [PATCH] Change calloc to malloc --- src/cnn/creation.c | 30 ++++++++++++++++++++++++------ 1 file changed, 24 insertions(+), 6 deletions(-) diff --git a/src/cnn/creation.c b/src/cnn/creation.c index 862ffb5..523b447 100644 --- a/src/cnn/creation.c +++ b/src/cnn/creation.c @@ -148,7 +148,10 @@ void add_convolution(Network* network, int depth_output, int dim_output, int act cnn->d_w[i][j] = (float**)malloc(sizeof(float*)*kernel_size); for (int k=0; k < kernel_size; k++) { cnn->w[i][j][k] = (float*)malloc(sizeof(float)*kernel_size); - cnn->d_w[i][j][k] = (float*)calloc(kernel_size, sizeof(float)); + cnn->d_w[i][j][k] = (float*)malloc(sizeof(float)*kernel_size); + for (int l=0; ld_w[i][j][k][l] = 0; + } } } } @@ -159,7 +162,10 @@ void add_convolution(Network* network, int depth_output, int dim_output, int act cnn->d_bias[i] = (float**)malloc(sizeof(float*)*bias_size); for (int j=0; j < bias_size; j++) { cnn->bias[i][j] = (float*)malloc(sizeof(float)*bias_size); - cnn->d_bias[i][j] = (float*)calloc(bias_size, sizeof(float)); + cnn->d_bias[i][j] = (float*)malloc(sizeof(float)*bias_size); + for (int k=0; kd_bias[i][j][k] = 0; + } } } int n_in = network->width[n-1]*network->width[n-1]*network->depth[n-1]; @@ -187,12 +193,18 @@ void add_dense(Network* network, int output_units, int activation) { nn->input_units = input_units; nn->output_units = output_units; nn->bias = (float*)malloc(sizeof(float)*output_units); - nn->d_bias = (float*)calloc(output_units, sizeof(float)); + nn->d_bias = (float*)malloc(sizeof(float)*output_units); + for (int i=0; id_bias[i] = 0; + } nn->weights = (float**)malloc(sizeof(float*)*input_units); nn->d_weights = (float**)malloc(sizeof(float*)*input_units); for (int i=0; i < input_units; i++) { nn->weights[i] = (float*)malloc(sizeof(float)*output_units); - nn->d_weights[i] = (float*)calloc(output_units, sizeof(float)); + nn->d_weights[i] = (float*)malloc(sizeof(float)*output_units); + for (int j=0; jd_weights[i][j] = 0; + } } initialisation_1d_matrix(network->initialisation, nn->bias, output_units, input_units, output_units); initialisation_2d_matrix(network->initialisation, nn->weights, input_units, output_units, input_units, output_units); @@ -220,12 +232,18 @@ void add_dense_linearisation(Network* network, int output_units, int activation) nn->output_units = output_units; nn->bias = (float*)malloc(sizeof(float)*output_units); - nn->d_bias = (float*)calloc(output_units, sizeof(float)); + nn->d_bias = (float*)malloc(sizeof(float)*output_units); + for (int i=0; id_bias[i] = 0; + } nn->weights = (float**)malloc(sizeof(float*)*input_units); nn->d_weights = (float**)malloc(sizeof(float*)*input_units); for (int i=0; i < input_units; i++) { nn->weights[i] = (float*)malloc(sizeof(float)*output_units); - nn->d_weights[i] = (float*)calloc(output_units, sizeof(float)); + nn->d_weights[i] = (float*)malloc(sizeof(float)*output_units); + for (int j=0; jd_weights[i][j] = 0; + } } initialisation_1d_matrix(network->initialisation, nn->bias, output_units, input_units, output_units); initialisation_2d_matrix(network->initialisation, nn->weights, input_units, output_units, input_units, output_units);