mirror of
https://github.com/augustin64/projet-tipe
synced 2025-01-23 15:16:26 +01:00
Removal of useless variables
This commit is contained in:
parent
2a88621c34
commit
b3bc4b7787
@ -33,7 +33,6 @@ void knuth_shuffle(int* tab, int n) {
|
||||
}
|
||||
|
||||
bool equals_networks(Network* network1, Network* network2) {
|
||||
int output_dim;
|
||||
checkEquals(size, "size", -1);
|
||||
checkEquals(initialisation, "initialisation", -1);
|
||||
checkEquals(dropout, "dropout", -1);
|
||||
@ -68,16 +67,11 @@ bool equals_networks(Network* network1, Network* network2) {
|
||||
}
|
||||
} else {
|
||||
// Type CNN
|
||||
output_dim = network1->width[i+1];
|
||||
checkEquals(kernel[i]->cnn->k_size, "kernel[i]->k_size", i);
|
||||
checkEquals(kernel[i]->cnn->rows, "kernel[i]->rows", i);
|
||||
checkEquals(kernel[i]->cnn->columns, "kernel[i]->columns", i);
|
||||
for (int j=0; j < network1->kernel[i]->cnn->columns; j++) {
|
||||
for (int k=0; k < output_dim; k++) {
|
||||
for (int l=0; l < output_dim; l++) {
|
||||
checkEquals(kernel[i]->cnn->bias[j], "kernel[i]->cnn->bias[j][k][l]", j);
|
||||
}
|
||||
}
|
||||
checkEquals(kernel[i]->cnn->bias[j], "kernel[i]->cnn->bias[j]", j);
|
||||
}
|
||||
for (int j=0; j < network1->kernel[i]->cnn->rows; j++) {
|
||||
for (int k=0; k < network1->kernel[i]->cnn->columns; k++) {
|
||||
@ -106,7 +100,6 @@ Network* copy_network(Network* network) {
|
||||
int rows;
|
||||
int k_size;
|
||||
int columns;
|
||||
int output_dim;
|
||||
|
||||
copyVar(dropout);
|
||||
copyVar(learning_rate);
|
||||
@ -172,8 +165,6 @@ Network* copy_network(Network* network) {
|
||||
rows = network->kernel[i]->cnn->rows;
|
||||
k_size = network->kernel[i]->cnn->k_size;
|
||||
columns = network->kernel[i]->cnn->columns;
|
||||
output_dim = network->width[i+1];
|
||||
|
||||
|
||||
network_cp->kernel[i]->nn = NULL;
|
||||
network_cp->kernel[i]->cnn = (Kernel_cnn*)nalloc(1, sizeof(Kernel_cnn));
|
||||
@ -252,7 +243,6 @@ void copy_network_parameters(Network* network_src, Network* network_dest) {
|
||||
int rows;
|
||||
int k_size;
|
||||
int columns;
|
||||
int output_dim;
|
||||
|
||||
copyVarParams(learning_rate);
|
||||
|
||||
@ -276,7 +266,6 @@ void copy_network_parameters(Network* network_src, Network* network_dest) {
|
||||
rows = network_src->kernel[i]->cnn->rows;
|
||||
k_size = network_src->kernel[i]->cnn->k_size;
|
||||
columns = network_src->kernel[i]->cnn->columns;
|
||||
output_dim = network_src->width[i+1];
|
||||
|
||||
for (int j=0; j < columns; j++) {
|
||||
copyVarParams(kernel[i]->cnn->bias[j]);
|
||||
@ -309,7 +298,6 @@ int count_null_weights(Network* network) {
|
||||
int rows;
|
||||
int k_size;
|
||||
int columns;
|
||||
int output_dim;
|
||||
|
||||
for (int i=0; i < size-1; i++) {
|
||||
if (!network->kernel[i]->cnn && network->kernel[i]->nn) { // Cas du NN
|
||||
@ -331,7 +319,6 @@ int count_null_weights(Network* network) {
|
||||
rows = network->kernel[i]->cnn->rows;
|
||||
k_size = network->kernel[i]->cnn->k_size;
|
||||
columns = network->kernel[i]->cnn->columns;
|
||||
output_dim = network->width[i+1];
|
||||
|
||||
for (int j=0; j < columns; j++) {
|
||||
null_bias += fabs(network->kernel[i]->cnn->bias[j]) <= epsilon;
|
||||
|
Loading…
Reference in New Issue
Block a user