diff --git a/src/cnn/utils.c b/src/cnn/utils.c index fdb119d..191feb3 100644 --- a/src/cnn/utils.c +++ b/src/cnn/utils.c @@ -33,7 +33,6 @@ void knuth_shuffle(int* tab, int n) { } bool equals_networks(Network* network1, Network* network2) { - int output_dim; checkEquals(size, "size", -1); checkEquals(initialisation, "initialisation", -1); checkEquals(dropout, "dropout", -1); @@ -68,16 +67,11 @@ bool equals_networks(Network* network1, Network* network2) { } } else { // Type CNN - output_dim = network1->width[i+1]; checkEquals(kernel[i]->cnn->k_size, "kernel[i]->k_size", i); checkEquals(kernel[i]->cnn->rows, "kernel[i]->rows", i); checkEquals(kernel[i]->cnn->columns, "kernel[i]->columns", i); for (int j=0; j < network1->kernel[i]->cnn->columns; j++) { - for (int k=0; k < output_dim; k++) { - for (int l=0; l < output_dim; l++) { - checkEquals(kernel[i]->cnn->bias[j], "kernel[i]->cnn->bias[j][k][l]", j); - } - } + checkEquals(kernel[i]->cnn->bias[j], "kernel[i]->cnn->bias[j]", j); } for (int j=0; j < network1->kernel[i]->cnn->rows; j++) { for (int k=0; k < network1->kernel[i]->cnn->columns; k++) { @@ -106,7 +100,6 @@ Network* copy_network(Network* network) { int rows; int k_size; int columns; - int output_dim; copyVar(dropout); copyVar(learning_rate); @@ -172,8 +165,6 @@ Network* copy_network(Network* network) { rows = network->kernel[i]->cnn->rows; k_size = network->kernel[i]->cnn->k_size; columns = network->kernel[i]->cnn->columns; - output_dim = network->width[i+1]; - network_cp->kernel[i]->nn = NULL; network_cp->kernel[i]->cnn = (Kernel_cnn*)nalloc(1, sizeof(Kernel_cnn)); @@ -252,7 +243,6 @@ void copy_network_parameters(Network* network_src, Network* network_dest) { int rows; int k_size; int columns; - int output_dim; copyVarParams(learning_rate); @@ -276,7 +266,6 @@ void copy_network_parameters(Network* network_src, Network* network_dest) { rows = network_src->kernel[i]->cnn->rows; k_size = network_src->kernel[i]->cnn->k_size; columns = network_src->kernel[i]->cnn->columns; - output_dim = network_src->width[i+1]; for (int j=0; j < columns; j++) { copyVarParams(kernel[i]->cnn->bias[j]); @@ -309,7 +298,6 @@ int count_null_weights(Network* network) { int rows; int k_size; int columns; - int output_dim; for (int i=0; i < size-1; i++) { if (!network->kernel[i]->cnn && network->kernel[i]->nn) { // Cas du NN @@ -331,7 +319,6 @@ int count_null_weights(Network* network) { rows = network->kernel[i]->cnn->rows; k_size = network->kernel[i]->cnn->k_size; columns = network->kernel[i]->cnn->columns; - output_dim = network->width[i+1]; for (int j=0; j < columns; j++) { null_bias += fabs(network->kernel[i]->cnn->bias[j]) <= epsilon;