mirror of
https://github.com/augustin64/projet-tipe
synced 2025-01-23 15:16:26 +01:00
Removal of useless lines
This commit is contained in:
parent
772b3511cf
commit
8de03863fa
@ -9,7 +9,7 @@
|
||||
|
||||
#include "include/creation.h"
|
||||
|
||||
Network* create_network(int max_size, float learning_rate, int dropout, int activation, int initialisation, int input_width, int input_depth) {
|
||||
Network* create_network(int max_size, float learning_rate, int dropout, int initialisation, int input_width, int input_depth) {
|
||||
if (dropout < 0 || dropout > 100) {
|
||||
printf_error("La probabilité de dropout n'est pas respecté, elle doit être comprise entre 0 et 100\n");
|
||||
}
|
||||
@ -27,19 +27,15 @@ Network* create_network(int max_size, float learning_rate, int dropout, int acti
|
||||
for (int i=0; i < max_size-1; i++) {
|
||||
network->kernel[i] = (Kernel*)nalloc(1, sizeof(Kernel));
|
||||
}
|
||||
network->kernel[0]->linearisation = DOESNT_LINEARISE;
|
||||
network->kernel[0]->activation = activation;
|
||||
network->width[0] = input_width;
|
||||
network->depth[0] = input_depth;
|
||||
network->kernel[0]->nn = NULL;
|
||||
network->kernel[0]->cnn = NULL;
|
||||
create_a_cube_input_layer(network, 0, input_depth, input_width);
|
||||
create_a_cube_input_z_layer(network, 0, input_depth, input_width);
|
||||
return network;
|
||||
}
|
||||
|
||||
Network* create_network_lenet5(float learning_rate, int dropout, int activation, int initialisation, int input_width, int input_depth) {
|
||||
Network* network = create_network(8, learning_rate, dropout, activation, initialisation, input_width, input_depth);
|
||||
Network* network = create_network(8, learning_rate, dropout, initialisation, input_width, input_depth);
|
||||
add_convolution(network, 5, 6, 1, 0, activation);
|
||||
add_average_pooling(network, 2, 2, 0);
|
||||
add_convolution(network, 5, 16, 1, 0, activation);
|
||||
@ -51,7 +47,7 @@ Network* create_network_lenet5(float learning_rate, int dropout, int activation,
|
||||
}
|
||||
|
||||
Network* create_network_alexnet(float learning_rate, int dropout, int activation, int initialisation, int size_output) {
|
||||
Network* network = create_network(12, learning_rate, dropout, activation, initialisation, 227, 3);
|
||||
Network* network = create_network(12, learning_rate, dropout, initialisation, 227, 3);
|
||||
add_convolution(network, 11, 96, 4, 0, activation);
|
||||
add_average_pooling(network, 3, 2, 0);
|
||||
add_convolution(network, 5, 256, 1, 2, activation);
|
||||
@ -67,7 +63,7 @@ Network* create_network_alexnet(float learning_rate, int dropout, int activation
|
||||
}
|
||||
|
||||
Network* create_simple_one(float learning_rate, int dropout, int activation, int initialisation, int input_width, int input_depth) {
|
||||
Network* network = create_network(3, learning_rate, dropout, activation, initialisation, input_width, input_depth);
|
||||
Network* network = create_network(3, learning_rate, dropout, initialisation, input_width, input_depth);
|
||||
add_dense_linearisation(network, 80, activation);
|
||||
add_dense(network, 10, SOFTMAX);
|
||||
return network;
|
||||
|
@ -7,7 +7,7 @@
|
||||
/*
|
||||
* Créé un réseau qui peut contenir max_size couche (dont celle d'input et d'output)
|
||||
*/
|
||||
Network* create_network(int max_size, float learning_rate, int dropout, int activation, int initialisation, int input_width, int input_depth);
|
||||
Network* create_network(int max_size, float learning_rate, int dropout, int initialisation, int input_width, int input_depth);
|
||||
|
||||
/*
|
||||
* Renvoie un réseau suivant l'architecture LeNet5
|
||||
|
Loading…
Reference in New Issue
Block a user