diff --git a/src/cnn/creation.c b/src/cnn/creation.c index c1e433c..bbbe2d1 100644 --- a/src/cnn/creation.c +++ b/src/cnn/creation.c @@ -9,7 +9,7 @@ #include "include/creation.h" -Network* create_network(int max_size, float learning_rate, int dropout, int activation, int initialisation, int input_width, int input_depth) { +Network* create_network(int max_size, float learning_rate, int dropout, int initialisation, int input_width, int input_depth) { if (dropout < 0 || dropout > 100) { printf_error("La probabilité de dropout n'est pas respecté, elle doit être comprise entre 0 et 100\n"); } @@ -27,19 +27,15 @@ Network* create_network(int max_size, float learning_rate, int dropout, int acti for (int i=0; i < max_size-1; i++) { network->kernel[i] = (Kernel*)nalloc(1, sizeof(Kernel)); } - network->kernel[0]->linearisation = DOESNT_LINEARISE; - network->kernel[0]->activation = activation; network->width[0] = input_width; network->depth[0] = input_depth; - network->kernel[0]->nn = NULL; - network->kernel[0]->cnn = NULL; create_a_cube_input_layer(network, 0, input_depth, input_width); create_a_cube_input_z_layer(network, 0, input_depth, input_width); return network; } Network* create_network_lenet5(float learning_rate, int dropout, int activation, int initialisation, int input_width, int input_depth) { - Network* network = create_network(8, learning_rate, dropout, activation, initialisation, input_width, input_depth); + Network* network = create_network(8, learning_rate, dropout, initialisation, input_width, input_depth); add_convolution(network, 5, 6, 1, 0, activation); add_average_pooling(network, 2, 2, 0); add_convolution(network, 5, 16, 1, 0, activation); @@ -51,7 +47,7 @@ Network* create_network_lenet5(float learning_rate, int dropout, int activation, } Network* create_network_alexnet(float learning_rate, int dropout, int activation, int initialisation, int size_output) { - Network* network = create_network(12, learning_rate, dropout, activation, initialisation, 227, 3); + Network* network = create_network(12, learning_rate, dropout, initialisation, 227, 3); add_convolution(network, 11, 96, 4, 0, activation); add_average_pooling(network, 3, 2, 0); add_convolution(network, 5, 256, 1, 2, activation); @@ -67,7 +63,7 @@ Network* create_network_alexnet(float learning_rate, int dropout, int activation } Network* create_simple_one(float learning_rate, int dropout, int activation, int initialisation, int input_width, int input_depth) { - Network* network = create_network(3, learning_rate, dropout, activation, initialisation, input_width, input_depth); + Network* network = create_network(3, learning_rate, dropout, initialisation, input_width, input_depth); add_dense_linearisation(network, 80, activation); add_dense(network, 10, SOFTMAX); return network; diff --git a/src/cnn/include/creation.h b/src/cnn/include/creation.h index dbdded3..f147449 100644 --- a/src/cnn/include/creation.h +++ b/src/cnn/include/creation.h @@ -7,7 +7,7 @@ /* * Créé un réseau qui peut contenir max_size couche (dont celle d'input et d'output) */ -Network* create_network(int max_size, float learning_rate, int dropout, int activation, int initialisation, int input_width, int input_depth); +Network* create_network(int max_size, float learning_rate, int dropout, int initialisation, int input_width, int input_depth); /* * Renvoie un réseau suivant l'architecture LeNet5