mirror of
https://github.com/augustin64/projet-tipe
synced 2025-02-02 19:39:39 +01:00
Add loss computation
This commit is contained in:
parent
c994dab6d9
commit
5f47b93672
@ -50,13 +50,13 @@ void backward_2d_pooling(float*** input, float*** output, int input_width, int o
|
||||
void backward_fully_connected(Kernel_nn* ker, float* input, float* input_z, float* output, int size_input, int size_output, ptr d_function, int is_first) {
|
||||
// Bias
|
||||
for (int j=0; j < size_output; j++) {
|
||||
ker->d_bias[j] = output[j];
|
||||
ker->d_bias[j] += output[j];
|
||||
}
|
||||
|
||||
// Weights
|
||||
for (int i=0; i < size_input; i++) {
|
||||
for (int j=0; j < size_output; j++) {
|
||||
ker->d_weights[i][j] = input[i]*output[j];
|
||||
ker->d_weights[i][j] += input[i]*output[j];
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -5,8 +5,9 @@
|
||||
#define DEF_TRAIN_H
|
||||
|
||||
#define EPOCHS 10
|
||||
#define BATCHES 120
|
||||
#define BATCHES 500
|
||||
#define USE_MULTITHREADING
|
||||
#define LEARNING_RATE 0.01
|
||||
|
||||
|
||||
/*
|
||||
@ -24,6 +25,7 @@ typedef struct TrainParameters {
|
||||
int start; // Début des images
|
||||
int nb_images; // Nombre d'images àn traiter
|
||||
float accuracy; // Accuracy (à renvoyer)
|
||||
float loss; // Loss (à renvoyer)
|
||||
} TrainParameters;
|
||||
|
||||
|
||||
|
@ -7,13 +7,13 @@
|
||||
* Met à jours les poids à partir de données obtenus après plusieurs backpropagations
|
||||
* Puis met à 0 tous les d_weights
|
||||
*/
|
||||
void update_weights(Network* network, Network* d_network, int nb_images);
|
||||
void update_weights(Network* network, Network* d_network);
|
||||
|
||||
/*
|
||||
* Met à jours les biais à partir de données obtenus après plusieurs backpropagations
|
||||
* Puis met à 0 tous les d_bias
|
||||
*/
|
||||
void update_bias(Network* network, Network* d_network, int nb_images);
|
||||
void update_bias(Network* network, Network* d_network);
|
||||
|
||||
/*
|
||||
* Met à 0 toutes les données de backpropagation de poids
|
||||
|
@ -40,12 +40,21 @@ void* train_thread(void* parameters) {
|
||||
int dataset_type = param->dataset_type;
|
||||
int start = param->start;
|
||||
int nb_images = param->nb_images;
|
||||
|
||||
float* wanted_output;
|
||||
float accuracy = 0.;
|
||||
float loss = 0.;
|
||||
|
||||
for (int i=start; i < start+nb_images; i++) {
|
||||
if (dataset_type == 0) {
|
||||
write_image_in_network_32(images[index[i]], height, width, network->input[0][0]);
|
||||
forward_propagation(network);
|
||||
maxi = indice_max(network->input[network->size-1][0][0], 10);
|
||||
|
||||
wanted_output = generate_wanted_output(labels[index[i]], 10);
|
||||
loss += compute_mean_squared_error(network->input[network->size-1][0][0], wanted_output, 10);
|
||||
free(wanted_output);
|
||||
|
||||
backward_propagation(network, labels[index[i]]);
|
||||
|
||||
if (maxi == labels[index[i]]) {
|
||||
@ -72,6 +81,7 @@ void* train_thread(void* parameters) {
|
||||
}
|
||||
|
||||
param->accuracy = accuracy;
|
||||
param->loss = loss;
|
||||
return NULL;
|
||||
}
|
||||
|
||||
@ -81,6 +91,9 @@ void train(int dataset_type, char* images_file, char* labels_file, char* data_di
|
||||
Network* network;
|
||||
int input_dim = -1;
|
||||
int input_depth = -1;
|
||||
|
||||
float loss;
|
||||
float batch_loss; // May be redundant with loss, but gives more informations
|
||||
float accuracy;
|
||||
float current_accuracy;
|
||||
|
||||
@ -121,9 +134,10 @@ void train(int dataset_type, char* images_file, char* labels_file, char* data_di
|
||||
|
||||
// Initialisation du réseau
|
||||
if (!recover) {
|
||||
network = create_network_lenet5(0.1, 0, TANH, GLOROT, input_dim, input_depth);
|
||||
network = create_network_lenet5(LEARNING_RATE, 0, TANH, GLOROT, input_dim, input_depth);
|
||||
} else {
|
||||
network = read_network(recover);
|
||||
network->learning_rate = LEARNING_RATE;
|
||||
}
|
||||
|
||||
|
||||
@ -201,13 +215,16 @@ void train(int dataset_type, char* images_file, char* labels_file, char* data_di
|
||||
// du multi-threading car chaque copie du réseau initiale sera légèrement différente
|
||||
// et donnera donc des résultats différents sur les mêmes images.
|
||||
accuracy = 0.;
|
||||
loss = 0.;
|
||||
knuth_shuffle(shuffle_index, nb_images_total);
|
||||
batches_epoques = div_up(nb_images_total, BATCHES);
|
||||
nb_images_total_remaining = nb_images_total;
|
||||
#ifndef USE_MULTITHREADING
|
||||
train_params->nb_images = BATCHES;
|
||||
#endif
|
||||
|
||||
for (int j=0; j < batches_epoques; j++) {
|
||||
batch_loss = 0.;
|
||||
#ifdef USE_MULTITHREADING
|
||||
if (j == batches_epoques-1) {
|
||||
nb_remaining_images = nb_images_total_remaining;
|
||||
@ -241,14 +258,16 @@ void train(int dataset_type, char* images_file, char* labels_file, char* data_di
|
||||
if (train_parameters[k]->network) {
|
||||
pthread_join( tid[k], NULL );
|
||||
accuracy += train_parameters[k]->accuracy / (float) nb_images_total;
|
||||
loss += train_parameters[k]->loss/nb_images_total;
|
||||
batch_loss += train_parameters[k]->loss/BATCHES;
|
||||
}
|
||||
}
|
||||
|
||||
// On attend que tous les fils aient fini avant d'appliquer des modifications au réseau principal
|
||||
for (int k=0; k < nb_threads; k++) {
|
||||
if (train_parameters[k]->network) { // Si le fil a été utilisé
|
||||
update_weights(network, train_parameters[k]->network, train_parameters[k]->nb_images);
|
||||
update_bias(network, train_parameters[k]->network, train_parameters[k]->nb_images);
|
||||
update_weights(network, train_parameters[k]->network);
|
||||
update_bias(network, train_parameters[k]->network);
|
||||
free_network(train_parameters[k]->network);
|
||||
}
|
||||
}
|
||||
@ -269,13 +288,18 @@ void train(int dataset_type, char* images_file, char* labels_file, char* data_di
|
||||
|
||||
accuracy += train_params->accuracy / (float) nb_images_total;
|
||||
current_accuracy = accuracy * nb_images_total/((j+1)*BATCHES);
|
||||
loss += train_params->loss/nb_images_total;
|
||||
batch_loss += train_params->loss/BATCHES;
|
||||
|
||||
update_weights(network, network, train_params->nb_images);
|
||||
update_bias(network, network, train_params->nb_images);
|
||||
update_weights(network, network);
|
||||
update_bias(network, network);
|
||||
|
||||
printf("\rÉpoque [%d/%d]\tImage [%d/%d]\tAccuracy: "YELLOW"%0.4f%%"RESET" ", i, epochs, BATCHES*(j+1), nb_images_total, current_accuracy*100);
|
||||
fflush(stdout);
|
||||
#endif
|
||||
// Il serait intéressant d'utiliser la perte calculée pour
|
||||
// savoir l'avancement dans l'apprentissage et donc comment adapter le taux d'apprentissage
|
||||
//network->learning_rate = 0.01*batch_loss;
|
||||
}
|
||||
end_time = omp_get_wtime();
|
||||
elapsed_time = end_time - start_time;
|
||||
|
@ -3,7 +3,7 @@
|
||||
#include "include/update.h"
|
||||
#include "include/struct.h"
|
||||
|
||||
void update_weights(Network* network, Network* d_network, int nb_images) {
|
||||
void update_weights(Network* network, Network* d_network) {
|
||||
int n = network->size;
|
||||
int input_depth, input_width, output_depth, output_width, k_size;
|
||||
Kernel* k_i;
|
||||
@ -24,7 +24,7 @@ void update_weights(Network* network, Network* d_network, int nb_images) {
|
||||
for (int b=0; b<output_depth; b++) {
|
||||
for (int c=0; c<k_size; c++) {
|
||||
for (int d=0; d<k_size; d++) {
|
||||
cnn->w[a][b][c][d] -= (network->learning_rate/nb_images) * d_cnn->d_w[a][b][c][d];
|
||||
cnn->w[a][b][c][d] -= network->learning_rate * d_cnn->d_w[a][b][c][d];
|
||||
d_cnn->d_w[a][b][c][d] = 0;
|
||||
}
|
||||
}
|
||||
@ -36,7 +36,7 @@ void update_weights(Network* network, Network* d_network, int nb_images) {
|
||||
Kernel_nn* d_nn = dk_i->nn;
|
||||
for (int a=0; a<input_width; a++) {
|
||||
for (int b=0; b<output_width; b++) {
|
||||
nn->weights[a][b] -= (network->learning_rate/nb_images) * d_nn->d_weights[a][b];
|
||||
nn->weights[a][b] -= network->learning_rate * d_nn->d_weights[a][b];
|
||||
d_nn->d_weights[a][b] = 0;
|
||||
}
|
||||
}
|
||||
@ -46,7 +46,7 @@ void update_weights(Network* network, Network* d_network, int nb_images) {
|
||||
int input_size = input_width*input_width*input_depth;
|
||||
for (int a=0; a<input_size; a++) {
|
||||
for (int b=0; b<output_width; b++) {
|
||||
nn->weights[a][b] -= (network->learning_rate/nb_images) * d_nn->d_weights[a][b];
|
||||
nn->weights[a][b] -= network->learning_rate * d_nn->d_weights[a][b];
|
||||
d_nn->d_weights[a][b] = 0;
|
||||
}
|
||||
}
|
||||
@ -57,7 +57,7 @@ void update_weights(Network* network, Network* d_network, int nb_images) {
|
||||
}
|
||||
}
|
||||
|
||||
void update_bias(Network* network, Network* d_network, int nb_images) {
|
||||
void update_bias(Network* network, Network* d_network) {
|
||||
|
||||
int n = network->size;
|
||||
int output_width, output_depth;
|
||||
@ -75,7 +75,7 @@ void update_bias(Network* network, Network* d_network, int nb_images) {
|
||||
for (int a=0; a<output_depth; a++) {
|
||||
for (int b=0; b<output_width; b++) {
|
||||
for (int c=0; c<output_width; c++) {
|
||||
cnn->bias[a][b][c] -= (network->learning_rate/nb_images) * d_cnn->d_bias[a][b][c];
|
||||
cnn->bias[a][b][c] -= network->learning_rate * d_cnn->d_bias[a][b][c];
|
||||
d_cnn->d_bias[a][b][c] = 0;
|
||||
}
|
||||
}
|
||||
@ -84,7 +84,7 @@ void update_bias(Network* network, Network* d_network, int nb_images) {
|
||||
Kernel_nn* nn = k_i->nn;
|
||||
Kernel_nn* d_nn = dk_i->nn;
|
||||
for (int a=0; a<output_width; a++) {
|
||||
nn->bias[a] -= (network->learning_rate/nb_images) * d_nn->d_bias[a];
|
||||
nn->bias[a] -= network->learning_rate * d_nn->d_bias[a];
|
||||
d_nn->d_bias[a] = 0;
|
||||
}
|
||||
} else { // Pooling
|
||||
|
Loading…
Reference in New Issue
Block a user