Add loss computation

This commit is contained in:
augustin64 2023-01-20 13:41:38 +01:00
parent c994dab6d9
commit 5f47b93672
5 changed files with 43 additions and 17 deletions

View File

@ -50,13 +50,13 @@ void backward_2d_pooling(float*** input, float*** output, int input_width, int o
void backward_fully_connected(Kernel_nn* ker, float* input, float* input_z, float* output, int size_input, int size_output, ptr d_function, int is_first) { void backward_fully_connected(Kernel_nn* ker, float* input, float* input_z, float* output, int size_input, int size_output, ptr d_function, int is_first) {
// Bias // Bias
for (int j=0; j < size_output; j++) { for (int j=0; j < size_output; j++) {
ker->d_bias[j] = output[j]; ker->d_bias[j] += output[j];
} }
// Weights // Weights
for (int i=0; i < size_input; i++) { for (int i=0; i < size_input; i++) {
for (int j=0; j < size_output; j++) { for (int j=0; j < size_output; j++) {
ker->d_weights[i][j] = input[i]*output[j]; ker->d_weights[i][j] += input[i]*output[j];
} }
} }

View File

@ -5,8 +5,9 @@
#define DEF_TRAIN_H #define DEF_TRAIN_H
#define EPOCHS 10 #define EPOCHS 10
#define BATCHES 120 #define BATCHES 500
#define USE_MULTITHREADING #define USE_MULTITHREADING
#define LEARNING_RATE 0.01
/* /*
@ -24,6 +25,7 @@ typedef struct TrainParameters {
int start; // Début des images int start; // Début des images
int nb_images; // Nombre d'images àn traiter int nb_images; // Nombre d'images àn traiter
float accuracy; // Accuracy (à renvoyer) float accuracy; // Accuracy (à renvoyer)
float loss; // Loss (à renvoyer)
} TrainParameters; } TrainParameters;

View File

@ -7,13 +7,13 @@
* Met à jours les poids à partir de données obtenus après plusieurs backpropagations * Met à jours les poids à partir de données obtenus après plusieurs backpropagations
* Puis met à 0 tous les d_weights * Puis met à 0 tous les d_weights
*/ */
void update_weights(Network* network, Network* d_network, int nb_images); void update_weights(Network* network, Network* d_network);
/* /*
* Met à jours les biais à partir de données obtenus après plusieurs backpropagations * Met à jours les biais à partir de données obtenus après plusieurs backpropagations
* Puis met à 0 tous les d_bias * Puis met à 0 tous les d_bias
*/ */
void update_bias(Network* network, Network* d_network, int nb_images); void update_bias(Network* network, Network* d_network);
/* /*
* Met à 0 toutes les données de backpropagation de poids * Met à 0 toutes les données de backpropagation de poids

View File

@ -40,12 +40,21 @@ void* train_thread(void* parameters) {
int dataset_type = param->dataset_type; int dataset_type = param->dataset_type;
int start = param->start; int start = param->start;
int nb_images = param->nb_images; int nb_images = param->nb_images;
float* wanted_output;
float accuracy = 0.; float accuracy = 0.;
float loss = 0.;
for (int i=start; i < start+nb_images; i++) { for (int i=start; i < start+nb_images; i++) {
if (dataset_type == 0) { if (dataset_type == 0) {
write_image_in_network_32(images[index[i]], height, width, network->input[0][0]); write_image_in_network_32(images[index[i]], height, width, network->input[0][0]);
forward_propagation(network); forward_propagation(network);
maxi = indice_max(network->input[network->size-1][0][0], 10); maxi = indice_max(network->input[network->size-1][0][0], 10);
wanted_output = generate_wanted_output(labels[index[i]], 10);
loss += compute_mean_squared_error(network->input[network->size-1][0][0], wanted_output, 10);
free(wanted_output);
backward_propagation(network, labels[index[i]]); backward_propagation(network, labels[index[i]]);
if (maxi == labels[index[i]]) { if (maxi == labels[index[i]]) {
@ -72,6 +81,7 @@ void* train_thread(void* parameters) {
} }
param->accuracy = accuracy; param->accuracy = accuracy;
param->loss = loss;
return NULL; return NULL;
} }
@ -81,6 +91,9 @@ void train(int dataset_type, char* images_file, char* labels_file, char* data_di
Network* network; Network* network;
int input_dim = -1; int input_dim = -1;
int input_depth = -1; int input_depth = -1;
float loss;
float batch_loss; // May be redundant with loss, but gives more informations
float accuracy; float accuracy;
float current_accuracy; float current_accuracy;
@ -121,9 +134,10 @@ void train(int dataset_type, char* images_file, char* labels_file, char* data_di
// Initialisation du réseau // Initialisation du réseau
if (!recover) { if (!recover) {
network = create_network_lenet5(0.1, 0, TANH, GLOROT, input_dim, input_depth); network = create_network_lenet5(LEARNING_RATE, 0, TANH, GLOROT, input_dim, input_depth);
} else { } else {
network = read_network(recover); network = read_network(recover);
network->learning_rate = LEARNING_RATE;
} }
@ -201,13 +215,16 @@ void train(int dataset_type, char* images_file, char* labels_file, char* data_di
// du multi-threading car chaque copie du réseau initiale sera légèrement différente // du multi-threading car chaque copie du réseau initiale sera légèrement différente
// et donnera donc des résultats différents sur les mêmes images. // et donnera donc des résultats différents sur les mêmes images.
accuracy = 0.; accuracy = 0.;
loss = 0.;
knuth_shuffle(shuffle_index, nb_images_total); knuth_shuffle(shuffle_index, nb_images_total);
batches_epoques = div_up(nb_images_total, BATCHES); batches_epoques = div_up(nb_images_total, BATCHES);
nb_images_total_remaining = nb_images_total; nb_images_total_remaining = nb_images_total;
#ifndef USE_MULTITHREADING #ifndef USE_MULTITHREADING
train_params->nb_images = BATCHES; train_params->nb_images = BATCHES;
#endif #endif
for (int j=0; j < batches_epoques; j++) { for (int j=0; j < batches_epoques; j++) {
batch_loss = 0.;
#ifdef USE_MULTITHREADING #ifdef USE_MULTITHREADING
if (j == batches_epoques-1) { if (j == batches_epoques-1) {
nb_remaining_images = nb_images_total_remaining; nb_remaining_images = nb_images_total_remaining;
@ -241,14 +258,16 @@ void train(int dataset_type, char* images_file, char* labels_file, char* data_di
if (train_parameters[k]->network) { if (train_parameters[k]->network) {
pthread_join( tid[k], NULL ); pthread_join( tid[k], NULL );
accuracy += train_parameters[k]->accuracy / (float) nb_images_total; accuracy += train_parameters[k]->accuracy / (float) nb_images_total;
loss += train_parameters[k]->loss/nb_images_total;
batch_loss += train_parameters[k]->loss/BATCHES;
} }
} }
// On attend que tous les fils aient fini avant d'appliquer des modifications au réseau principal // On attend que tous les fils aient fini avant d'appliquer des modifications au réseau principal
for (int k=0; k < nb_threads; k++) { for (int k=0; k < nb_threads; k++) {
if (train_parameters[k]->network) { // Si le fil a été utilisé if (train_parameters[k]->network) { // Si le fil a été utilisé
update_weights(network, train_parameters[k]->network, train_parameters[k]->nb_images); update_weights(network, train_parameters[k]->network);
update_bias(network, train_parameters[k]->network, train_parameters[k]->nb_images); update_bias(network, train_parameters[k]->network);
free_network(train_parameters[k]->network); free_network(train_parameters[k]->network);
} }
} }
@ -269,13 +288,18 @@ void train(int dataset_type, char* images_file, char* labels_file, char* data_di
accuracy += train_params->accuracy / (float) nb_images_total; accuracy += train_params->accuracy / (float) nb_images_total;
current_accuracy = accuracy * nb_images_total/((j+1)*BATCHES); current_accuracy = accuracy * nb_images_total/((j+1)*BATCHES);
loss += train_params->loss/nb_images_total;
batch_loss += train_params->loss/BATCHES;
update_weights(network, network, train_params->nb_images); update_weights(network, network);
update_bias(network, network, train_params->nb_images); update_bias(network, network);
printf("\rÉpoque [%d/%d]\tImage [%d/%d]\tAccuracy: "YELLOW"%0.4f%%"RESET" ", i, epochs, BATCHES*(j+1), nb_images_total, current_accuracy*100); printf("\rÉpoque [%d/%d]\tImage [%d/%d]\tAccuracy: "YELLOW"%0.4f%%"RESET" ", i, epochs, BATCHES*(j+1), nb_images_total, current_accuracy*100);
fflush(stdout); fflush(stdout);
#endif #endif
// Il serait intéressant d'utiliser la perte calculée pour
// savoir l'avancement dans l'apprentissage et donc comment adapter le taux d'apprentissage
//network->learning_rate = 0.01*batch_loss;
} }
end_time = omp_get_wtime(); end_time = omp_get_wtime();
elapsed_time = end_time - start_time; elapsed_time = end_time - start_time;

View File

@ -3,7 +3,7 @@
#include "include/update.h" #include "include/update.h"
#include "include/struct.h" #include "include/struct.h"
void update_weights(Network* network, Network* d_network, int nb_images) { void update_weights(Network* network, Network* d_network) {
int n = network->size; int n = network->size;
int input_depth, input_width, output_depth, output_width, k_size; int input_depth, input_width, output_depth, output_width, k_size;
Kernel* k_i; Kernel* k_i;
@ -24,7 +24,7 @@ void update_weights(Network* network, Network* d_network, int nb_images) {
for (int b=0; b<output_depth; b++) { for (int b=0; b<output_depth; b++) {
for (int c=0; c<k_size; c++) { for (int c=0; c<k_size; c++) {
for (int d=0; d<k_size; d++) { for (int d=0; d<k_size; d++) {
cnn->w[a][b][c][d] -= (network->learning_rate/nb_images) * d_cnn->d_w[a][b][c][d]; cnn->w[a][b][c][d] -= network->learning_rate * d_cnn->d_w[a][b][c][d];
d_cnn->d_w[a][b][c][d] = 0; d_cnn->d_w[a][b][c][d] = 0;
} }
} }
@ -36,7 +36,7 @@ void update_weights(Network* network, Network* d_network, int nb_images) {
Kernel_nn* d_nn = dk_i->nn; Kernel_nn* d_nn = dk_i->nn;
for (int a=0; a<input_width; a++) { for (int a=0; a<input_width; a++) {
for (int b=0; b<output_width; b++) { for (int b=0; b<output_width; b++) {
nn->weights[a][b] -= (network->learning_rate/nb_images) * d_nn->d_weights[a][b]; nn->weights[a][b] -= network->learning_rate * d_nn->d_weights[a][b];
d_nn->d_weights[a][b] = 0; d_nn->d_weights[a][b] = 0;
} }
} }
@ -46,7 +46,7 @@ void update_weights(Network* network, Network* d_network, int nb_images) {
int input_size = input_width*input_width*input_depth; int input_size = input_width*input_width*input_depth;
for (int a=0; a<input_size; a++) { for (int a=0; a<input_size; a++) {
for (int b=0; b<output_width; b++) { for (int b=0; b<output_width; b++) {
nn->weights[a][b] -= (network->learning_rate/nb_images) * d_nn->d_weights[a][b]; nn->weights[a][b] -= network->learning_rate * d_nn->d_weights[a][b];
d_nn->d_weights[a][b] = 0; d_nn->d_weights[a][b] = 0;
} }
} }
@ -57,7 +57,7 @@ void update_weights(Network* network, Network* d_network, int nb_images) {
} }
} }
void update_bias(Network* network, Network* d_network, int nb_images) { void update_bias(Network* network, Network* d_network) {
int n = network->size; int n = network->size;
int output_width, output_depth; int output_width, output_depth;
@ -75,7 +75,7 @@ void update_bias(Network* network, Network* d_network, int nb_images) {
for (int a=0; a<output_depth; a++) { for (int a=0; a<output_depth; a++) {
for (int b=0; b<output_width; b++) { for (int b=0; b<output_width; b++) {
for (int c=0; c<output_width; c++) { for (int c=0; c<output_width; c++) {
cnn->bias[a][b][c] -= (network->learning_rate/nb_images) * d_cnn->d_bias[a][b][c]; cnn->bias[a][b][c] -= network->learning_rate * d_cnn->d_bias[a][b][c];
d_cnn->d_bias[a][b][c] = 0; d_cnn->d_bias[a][b][c] = 0;
} }
} }
@ -84,7 +84,7 @@ void update_bias(Network* network, Network* d_network, int nb_images) {
Kernel_nn* nn = k_i->nn; Kernel_nn* nn = k_i->nn;
Kernel_nn* d_nn = dk_i->nn; Kernel_nn* d_nn = dk_i->nn;
for (int a=0; a<output_width; a++) { for (int a=0; a<output_width; a++) {
nn->bias[a] -= (network->learning_rate/nb_images) * d_nn->d_bias[a]; nn->bias[a] -= network->learning_rate * d_nn->d_bias[a];
d_nn->d_bias[a] = 0; d_nn->d_bias[a] = 0;
} }
} else { // Pooling } else { // Pooling