tipe/src/cnn/utils.c

368 lines
15 KiB
C
Raw Normal View History

2022-09-28 12:42:44 +02:00
#include <stdlib.h>
#include <stdio.h>
#include <stdbool.h>
#include <string.h>
2023-02-19 10:22:42 +01:00
#include <math.h>
2022-09-28 12:42:44 +02:00
2023-02-18 13:03:08 +01:00
#include "../include/memory_management.h"
2022-10-24 12:54:51 +02:00
#include "../include/colors.h"
2022-09-28 12:42:44 +02:00
#include "include/struct.h"
2022-10-05 11:20:26 +02:00
#define copyVar(var) network_cp->var = network->var
2023-01-28 13:09:52 +01:00
#define copyVarParams(var) network_dest->var = network_src->var
2022-10-05 11:20:26 +02:00
#define checkEquals(var, name, indice) \
if (network1->var != network2->var) { \
printf_error("network1->" name " et network2->" name " ne sont pas égaux\n"); \
if (indice != -1) { \
2022-12-07 10:44:28 +01:00
printf(BOLDBLUE"[ INFO_ ]" RESET " indice: %d\n", indice); \
2022-10-05 11:20:26 +02:00
} \
return false; \
}
2022-09-28 12:42:44 +02:00
2022-12-07 10:44:28 +01:00
void swap(int* tab, int i, int j) {
int tmp = tab[i];
tab[i] = tab[j];
tab[j] = tmp;
}
void knuth_shuffle(int* tab, int n) {
for(int i=1; i < n; i++) {
swap(tab, i, rand() %i);
}
}
2022-09-28 12:42:44 +02:00
bool equals_networks(Network* network1, Network* network2) {
2022-11-08 19:57:13 +01:00
int output_dim;
2022-09-28 12:42:44 +02:00
checkEquals(size, "size", -1);
checkEquals(initialisation, "initialisation", -1);
checkEquals(dropout, "dropout", -1);
2023-01-17 15:34:29 +01:00
2022-09-28 12:42:44 +02:00
for (int i=0; i < network1->size; i++) {
checkEquals(width[i], "input_width", i);
checkEquals(depth[i], "input_depth", i);
}
2023-01-17 12:50:13 +01:00
for (int i=0; i < network1->size-1; i++) {
2022-09-28 12:42:44 +02:00
checkEquals(kernel[i]->activation, "kernel[i]->activation", i);
if ((!network1->kernel[i]->cnn ^ !network2->kernel[i]->cnn) || (!network1->kernel[i]->nn ^ !network2->kernel[i]->nn)) {
printf(BOLDRED "[ ERROR ]" RESET "network1->kernel[%d] et network1->kernel[%d] diffèrent de type\n", i, i);
return false;
}
checkEquals(kernel[i]->linearisation, "kernel[i]->linearisation", i);
2022-09-28 12:42:44 +02:00
if (!network1->kernel[i]->cnn && !network1->kernel[i]->nn) {
// Type Pooling
checkEquals(kernel[i]->activation, "kernel[i]->activation pour un pooling", i);
2023-02-03 15:12:59 +01:00
checkEquals(kernel[i]->pooling, "kernel[i]->pooling pour un pooling", i);
2022-09-28 12:42:44 +02:00
} else if (!network1->kernel[i]->cnn) {
// Type NN
2023-02-19 12:50:27 +01:00
checkEquals(kernel[i]->nn->size_input, "kernel[i]->nn->size_input", i);
2022-09-28 12:42:44 +02:00
checkEquals(kernel[i]->nn->output_units, "kernel[i]->nn->output_units", i);
for (int j=0; j < network1->kernel[i]->nn->output_units; j++) {
checkEquals(kernel[i]->nn->bias[j], "kernel[i]->nn->bias[j]", j);
}
2023-02-19 12:50:27 +01:00
for (int j=0; j < network1->kernel[i]->nn->size_input; j++) {
2022-09-28 12:42:44 +02:00
for (int k=0; k < network1->kernel[i]->nn->output_units; k++) {
checkEquals(kernel[i]->nn->weights[j][k], "kernel[i]->nn->weights[j][k]", k);
}
}
} else {
// Type CNN
2022-11-09 12:55:55 +01:00
output_dim = network1->width[i+1];
2022-09-28 12:42:44 +02:00
checkEquals(kernel[i]->cnn->k_size, "kernel[i]->k_size", i);
checkEquals(kernel[i]->cnn->rows, "kernel[i]->rows", i);
checkEquals(kernel[i]->cnn->columns, "kernel[i]->columns", i);
for (int j=0; j < network1->kernel[i]->cnn->columns; j++) {
2022-11-08 19:57:13 +01:00
for (int k=0; k < output_dim; k++) {
for (int l=0; l < output_dim; l++) {
2022-09-28 12:42:44 +02:00
checkEquals(kernel[i]->cnn->bias[j][k][l], "kernel[i]->cnn->bias[j][k][l]", l);
}
}
}
for (int j=0; j < network1->kernel[i]->cnn->rows; j++) {
for (int k=0; k < network1->kernel[i]->cnn->columns; k++) {
for (int l=0; l < network1->kernel[i]->cnn->k_size; l++) {
for (int m=0; m < network1->kernel[i]->cnn->k_size; m++) {
checkEquals(kernel[i]->cnn->w[j][k][l][m], "kernel[i]->cnn->bias[j][k][l][m]", m);
}
}
}
}
}
}
return true;
2022-10-05 11:20:26 +02:00
}
Network* copy_network(Network* network) {
2023-01-28 22:04:38 +01:00
Network* network_cp = (Network*)nalloc(sizeof(Network));
2022-10-05 11:20:26 +02:00
// Paramètre du réseau
int size = network->size;
// Paramètres des couches NN
2023-02-19 12:50:27 +01:00
int size_input;
2022-10-05 11:20:26 +02:00
int output_units;
// Paramètres des couches CNN
int rows;
int k_size;
int columns;
2022-11-08 19:57:13 +01:00
int output_dim;
2022-10-05 11:20:26 +02:00
copyVar(dropout);
copyVar(learning_rate);
copyVar(initialisation);
copyVar(max_size);
copyVar(size);
2023-01-28 22:04:38 +01:00
network_cp->width = (int*)nalloc(sizeof(int)*size);
network_cp->depth = (int*)nalloc(sizeof(int)*size);
2022-10-05 11:20:26 +02:00
for (int i=0; i < size; i++) {
copyVar(width[i]);
copyVar(depth[i]);
}
2023-01-28 22:04:38 +01:00
network_cp->kernel = (Kernel**)nalloc(sizeof(Kernel*)*(size-1));
2023-01-17 12:50:13 +01:00
for (int i=0; i < size-1; i++) {
2023-01-28 22:04:38 +01:00
network_cp->kernel[i] = (Kernel*)nalloc(sizeof(Kernel));
2022-10-05 11:20:26 +02:00
if (!network->kernel[i]->nn && !network->kernel[i]->cnn) { // Cas de la couche de linéarisation
2023-02-02 14:05:26 +01:00
copyVar(kernel[i]->pooling);
2022-10-05 11:20:26 +02:00
copyVar(kernel[i]->activation);
copyVar(kernel[i]->linearisation); // 1
network_cp->kernel[i]->cnn = NULL;
network_cp->kernel[i]->nn = NULL;
}
else if (!network->kernel[i]->cnn) { // Cas du NN
2023-02-02 14:05:26 +01:00
copyVar(kernel[i]->pooling);
2022-10-05 11:20:26 +02:00
copyVar(kernel[i]->activation);
copyVar(kernel[i]->linearisation); // 0
2023-02-19 12:50:27 +01:00
size_input = network->kernel[i]->nn->size_input;
2022-10-05 11:20:26 +02:00
output_units = network->kernel[i]->nn->output_units;
network_cp->kernel[i]->cnn = NULL;
2023-01-28 22:04:38 +01:00
network_cp->kernel[i]->nn = (Kernel_nn*)nalloc(sizeof(Kernel_nn));
2022-10-05 11:20:26 +02:00
2023-02-19 12:50:27 +01:00
copyVar(kernel[i]->nn->size_input);
2022-10-05 11:20:26 +02:00
copyVar(kernel[i]->nn->output_units);
2023-01-28 22:04:38 +01:00
network_cp->kernel[i]->nn->bias = (float*)nalloc(sizeof(float)*output_units);
network_cp->kernel[i]->nn->d_bias = (float*)nalloc(sizeof(float)*output_units);
2022-10-05 11:20:26 +02:00
for (int j=0; j < output_units; j++) {
copyVar(kernel[i]->nn->bias[j]);
network_cp->kernel[i]->nn->d_bias[j] = 0.;
}
2023-02-19 12:50:27 +01:00
network_cp->kernel[i]->nn->weights = (float**)nalloc(sizeof(float*)*size_input);
network_cp->kernel[i]->nn->d_weights = (float**)nalloc(sizeof(float*)*size_input);
for (int j=0; j < size_input; j++) {
2023-01-28 22:04:38 +01:00
network_cp->kernel[i]->nn->weights[j] = (float*)nalloc(sizeof(float)*output_units);
network_cp->kernel[i]->nn->d_weights[j] = (float*)nalloc(sizeof(float)*output_units);
2022-10-05 11:20:26 +02:00
for (int k=0; k < output_units; k++) {
copyVar(kernel[i]->nn->weights[j][k]);
network_cp->kernel[i]->nn->d_weights[j][k] = 0.;
}
}
}
else { // Cas du CNN
2023-02-02 14:05:26 +01:00
copyVar(kernel[i]->pooling);
2022-10-05 11:20:26 +02:00
copyVar(kernel[i]->activation);
copyVar(kernel[i]->linearisation); // 0
rows = network->kernel[i]->cnn->rows;
k_size = network->kernel[i]->cnn->k_size;
columns = network->kernel[i]->cnn->columns;
2022-11-09 12:55:55 +01:00
output_dim = network->width[i+1];
2023-01-17 15:34:29 +01:00
2022-10-05 11:20:26 +02:00
network_cp->kernel[i]->nn = NULL;
2023-01-28 22:04:38 +01:00
network_cp->kernel[i]->cnn = (Kernel_cnn*)nalloc(sizeof(Kernel_cnn));
2022-10-05 11:20:26 +02:00
copyVar(kernel[i]->cnn->rows);
copyVar(kernel[i]->cnn->k_size);
copyVar(kernel[i]->cnn->columns);
2023-01-28 22:04:38 +01:00
network_cp->kernel[i]->cnn->bias = (float***)nalloc(sizeof(float**)*columns);
network_cp->kernel[i]->cnn->d_bias = (float***)nalloc(sizeof(float**)*columns);
2022-10-05 11:20:26 +02:00
for (int j=0; j < columns; j++) {
2023-01-28 22:04:38 +01:00
network_cp->kernel[i]->cnn->bias[j] = (float**)nalloc(sizeof(float*)*output_dim);
network_cp->kernel[i]->cnn->d_bias[j] = (float**)nalloc(sizeof(float*)*output_dim);
2022-11-08 19:57:13 +01:00
for (int k=0; k < output_dim; k++) {
2023-01-28 22:04:38 +01:00
network_cp->kernel[i]->cnn->bias[j][k] = (float*)nalloc(sizeof(float)*output_dim);
network_cp->kernel[i]->cnn->d_bias[j][k] = (float*)nalloc(sizeof(float)*output_dim);
2022-11-08 19:57:13 +01:00
for (int l=0; l < output_dim; l++) {
2022-10-05 11:20:26 +02:00
copyVar(kernel[i]->cnn->bias[j][k][l]);
network_cp->kernel[i]->cnn->d_bias[j][k][l] = 0.;
}
}
}
2023-01-28 22:04:38 +01:00
network_cp->kernel[i]->cnn->w = (float****)nalloc(sizeof(float***)*rows);
network_cp->kernel[i]->cnn->d_w = (float****)nalloc(sizeof(float***)*rows);
2022-10-05 11:20:26 +02:00
for (int j=0; j < rows; j++) {
2023-01-28 22:04:38 +01:00
network_cp->kernel[i]->cnn->w[j] = (float***)nalloc(sizeof(float**)*columns);
network_cp->kernel[i]->cnn->d_w[j] = (float***)nalloc(sizeof(float**)*columns);
2022-10-05 11:20:26 +02:00
for (int k=0; k < columns; k++) {
2023-01-28 22:04:38 +01:00
network_cp->kernel[i]->cnn->w[j][k] = (float**)nalloc(sizeof(float*)*k_size);
network_cp->kernel[i]->cnn->d_w[j][k] = (float**)nalloc(sizeof(float*)*k_size);
2022-10-05 11:20:26 +02:00
for (int l=0; l < k_size; l++) {
2023-01-28 22:04:38 +01:00
network_cp->kernel[i]->cnn->w[j][k][l] = (float*)nalloc(sizeof(float)*k_size);
network_cp->kernel[i]->cnn->d_w[j][k][l] = (float*)nalloc(sizeof(float)*k_size);
2022-10-05 11:20:26 +02:00
for (int m=0; m < k_size; m++) {
copyVar(kernel[i]->cnn->w[j][k][l][m]);
network_cp->kernel[i]->cnn->d_w[j][k][l][m] = 0.;
}
}
}
}
}
}
2023-01-28 22:04:38 +01:00
network_cp->input = (float****)nalloc(sizeof(float***)*size);
2022-10-05 11:20:26 +02:00
for (int i=0; i < size; i++) { // input[size][couche->depth][couche->dim][couche->dim]
2023-01-28 22:04:38 +01:00
network_cp->input[i] = (float***)nalloc(sizeof(float**)*network->depth[i]);
2022-10-05 11:20:26 +02:00
for (int j=0; j < network->depth[i]; j++) {
2023-01-28 22:04:38 +01:00
network_cp->input[i][j] = (float**)nalloc(sizeof(float*)*network->width[i]);
2022-10-05 11:20:26 +02:00
for (int k=0; k < network->width[i]; k++) {
2023-01-28 22:04:38 +01:00
network_cp->input[i][j][k] = (float*)nalloc(sizeof(float)*network->width[i]);
2022-10-05 11:20:26 +02:00
for (int l=0; l < network->width[i]; l++) {
network_cp->input[i][j][k][l] = 0.;
}
}
}
}
2023-01-28 22:04:38 +01:00
network_cp->input_z = (float****)nalloc(sizeof(float***)*size);
2022-11-23 10:41:19 +01:00
for (int i=0; i < size; i++) { // input_z[size][couche->depth][couche->dim][couche->dim]
2023-01-28 22:04:38 +01:00
network_cp->input_z[i] = (float***)nalloc(sizeof(float**)*network->depth[i]);
2022-11-23 10:41:19 +01:00
for (int j=0; j < network->depth[i]; j++) {
2023-01-28 22:04:38 +01:00
network_cp->input_z[i][j] = (float**)nalloc(sizeof(float*)*network->width[i]);
2022-11-23 10:41:19 +01:00
for (int k=0; k < network->width[i]; k++) {
2023-01-28 22:04:38 +01:00
network_cp->input_z[i][j][k] = (float*)nalloc(sizeof(float)*network->width[i]);
2022-11-23 10:41:19 +01:00
for (int l=0; l < network->width[i]; l++) {
network_cp->input_z[i][j][k][l] = 0.;
}
}
}
}
2022-10-05 11:20:26 +02:00
return network_cp;
2023-01-28 13:09:52 +01:00
}
void copy_network_parameters(Network* network_src, Network* network_dest) {
// Paramètre du réseau
int size = network_src->size;
// Paramètres des couches NN
2023-02-19 12:50:27 +01:00
int size_input;
2023-01-28 13:09:52 +01:00
int output_units;
// Paramètres des couches CNN
int rows;
int k_size;
int columns;
int output_dim;
copyVarParams(learning_rate);
for (int i=0; i < size-1; i++) {
if (!network_src->kernel[i]->cnn && network_src->kernel[i]->nn) { // Cas du NN
2023-02-19 12:50:27 +01:00
size_input = network_src->kernel[i]->nn->size_input;
2023-01-28 13:09:52 +01:00
output_units = network_src->kernel[i]->nn->output_units;
for (int j=0; j < output_units; j++) {
copyVarParams(kernel[i]->nn->bias[j]);
}
2023-02-19 12:50:27 +01:00
for (int j=0; j < size_input; j++) {
2023-01-28 13:09:52 +01:00
for (int k=0; k < output_units; k++) {
copyVarParams(kernel[i]->nn->weights[j][k]);
}
}
}
else if (network_src->kernel[i]->cnn && !network_src->kernel[i]->nn) { // Cas du CNN
rows = network_src->kernel[i]->cnn->rows;
k_size = network_src->kernel[i]->cnn->k_size;
columns = network_src->kernel[i]->cnn->columns;
output_dim = network_src->width[i+1];
for (int j=0; j < columns; j++) {
for (int k=0; k < output_dim; k++) {
for (int l=0; l < output_dim; l++) {
copyVarParams(kernel[i]->cnn->bias[j][k][l]);
}
}
}
for (int j=0; j < rows; j++) {
for (int k=0; k < columns; k++) {
for (int l=0; l < k_size; l++) {
for (int m=0; m < k_size; m++) {
copyVarParams(kernel[i]->cnn->w[j][k][l][m]);
}
}
}
}
}
}
2023-02-19 10:22:42 +01:00
}
int count_null_weights(Network* network) {
float epsilon = 0.000001;
int null_weights = 0;
int null_bias = 0;
int size = network->size;
// Paramètres des couches NN
2023-02-19 12:50:27 +01:00
int size_input;
2023-02-19 10:22:42 +01:00
int output_units;
// Paramètres des couches CNN
int rows;
int k_size;
int columns;
int output_dim;
for (int i=0; i < size-1; i++) {
if (!network->kernel[i]->cnn && network->kernel[i]->nn) { // Cas du NN
2023-02-19 12:50:27 +01:00
size_input = network->kernel[i]->nn->size_input;
2023-02-19 10:22:42 +01:00
output_units = network->kernel[i]->nn->output_units;
for (int j=0; j < output_units; j++) {
null_bias += fabs(network->kernel[i]->nn->bias[j]) <= epsilon;
}
2023-02-19 12:50:27 +01:00
for (int j=0; j < size_input; j++) {
2023-02-19 10:22:42 +01:00
for (int k=0; k < output_units; k++) {
null_weights += fabs(network->kernel[i]->nn->weights[j][k]) <= epsilon;
}
}
}
else if (network->kernel[i]->cnn && !network->kernel[i]->nn) { // Cas du CNN
rows = network->kernel[i]->cnn->rows;
k_size = network->kernel[i]->cnn->k_size;
columns = network->kernel[i]->cnn->columns;
output_dim = network->width[i+1];
for (int j=0; j < columns; j++) {
for (int k=0; k < output_dim; k++) {
for (int l=0; l < output_dim; l++) {
null_bias += fabs(network->kernel[i]->cnn->bias[j][k][l]) <= epsilon;
}
}
}
for (int j=0; j < rows; j++) {
for (int k=0; k < columns; k++) {
for (int l=0; l < k_size; l++) {
for (int m=0; m < k_size; m++) {
null_weights = fabs(network->kernel[i]->cnn->w[j][k][l][m]) <= epsilon;
}
}
}
}
}
}
return null_weights;
2022-09-28 12:42:44 +02:00
}