Add equals_networks(...) function

This commit is contained in:
augustin64 2022-09-28 12:42:44 +02:00
parent 577954908c
commit a478a454fd
4 changed files with 107 additions and 20 deletions

View File

@ -31,6 +31,7 @@ Network* create_network(int max_size, int dropout, int initialisation, int input
Network* create_network_lenet5(int dropout, int activation, int initialisation) {
Network* network = create_network(8, dropout, initialisation, 32, 1);
network->kernel[0]->activation = activation;
network->kernel[0]->linearisation = 0;
add_convolution(network, 6, 5, activation);
add_2d_average_pooling(network, 2);
add_convolution(network, 16, 5, activation);

17
src/cnn/include/utils.h Normal file
View File

@ -0,0 +1,17 @@
#include <stdlib.h>
#include <stdio.h>
#include <stdbool.h>
#include <string.h>
#include "../../colors.h"
#include "struct.h"
#ifndef DEF_UTILS_H
#define DEF_UTILS_H
/*
* Vérifie si deux réseaux sont égaux
*/
bool equals_networks(Network* network1, Network* network2);
#endif

View File

@ -8,24 +8,27 @@
#define MAGIC_NUMBER 1012
#define bufferAdd(val) {buffer[indice_buffer] = val; indice_buffer++;}
void write_network(char* filename, Network* network) {
FILE *ptr;
int size = network->size;
int type_couche[size];
int indice_buffer = 0;
ptr = fopen(filename, "wb");
uint32_t buffer[(network->size)*3+4];
buffer[0] = MAGIC_NUMBER;
buffer[1] = size;
buffer[2] = network->initialisation;
buffer[3] = network->dropout;
bufferAdd(MAGIC_NUMBER);
bufferAdd(size);
bufferAdd(network->initialisation);
bufferAdd(network->dropout);
// Écriture du header
for (int i=0; i < size; i++) {
buffer[2*i+4] = network->width[i];
buffer[2*i+5] = network->depth[i];
bufferAdd(network->width[i]);
bufferAdd(network->depth[i]);
}
for (int i=0; i < size; i++) {
@ -36,7 +39,7 @@ void write_network(char* filename, Network* network) {
} else {
type_couche[i] = 0;
}
buffer[i+2*size+4] = type_couche[i];
bufferAdd(type_couche[i]);
}
fwrite(buffer, sizeof(buffer), 1, ptr);
@ -51,7 +54,7 @@ void write_network(char* filename, Network* network) {
void write_couche(Kernel* kernel, int type_couche, FILE* ptr) {
int indice;
int indice_buffer = 0;
if (type_couche == 0) { // Cas du CNN
Kernel_cnn* cnn = kernel->cnn;
@ -64,22 +67,20 @@ void write_couche(Kernel* kernel, int type_couche, FILE* ptr) {
fwrite(pre_buffer, sizeof(pre_buffer), 1, ptr);
// Écriture du corps
float buffer[2*cnn->k_size*cnn->k_size*cnn->columns*(cnn->rows+1)];
float buffer[cnn->k_size*cnn->k_size*cnn->columns*(cnn->rows+1)];
for (int i=0; i < cnn->columns; i++) {
for (int j=0; j < cnn->k_size; j++) {
for (int k=0; k < cnn->k_size; k++) {
indice = cnn->k_size*(i*cnn->k_size+j)+k;
buffer[indice] = cnn->bias[i][j][k];
bufferAdd(cnn->bias[i][j][k]);
}
}
}
int av_bias = cnn->columns*cnn->k_size*cnn->k_size;
for (int i=0; i < cnn->rows; i++) {
for (int j=0; j < cnn->columns; j++) {
for (int k=0; k < cnn->k_size; k++) {
for (int l=0; l < cnn->k_size; l++) {
indice = ((i*cnn->columns+j)*cnn->k_size+k)*cnn->k_size+l+av_bias;
buffer[indice] = cnn->w[i][j][k][l];
bufferAdd(cnn->w[i][j][k][l]);
}
}
}
@ -98,12 +99,11 @@ void write_couche(Kernel* kernel, int type_couche, FILE* ptr) {
// Écriture du corps
float buffer[(1+nn->input_units)*nn->output_units];
for (int i=0; i < nn->output_units; i++) {
buffer[i] = nn->bias[i];
bufferAdd(nn->bias[i]);
}
int av_bias = nn->output_units;
for (int i=0; i < nn->input_units; i++) {
for (int j=0; j < nn->output_units; j++) {
buffer[i*nn->output_units+j+av_bias] = nn->weights[i][j];
bufferAdd(nn->weights[i][j]);
}
}
fwrite(buffer, sizeof(buffer), 1, ptr);
@ -138,6 +138,7 @@ Network* read_network(char* filename) {
// Lecture des constantes du réseau
fread(&size, sizeof(uint32_t), 1, ptr);
network->size = size;
network->max_size = size;
fread(&initialisation, sizeof(uint32_t), 1, ptr);
network->initialisation = initialisation;
fread(&dropout, sizeof(uint32_t), 1, ptr);
@ -148,10 +149,10 @@ Network* read_network(char* filename) {
network->depth = (int*)malloc(sizeof(int)*size);
for (int i=0; i < (int)size; i++) {
fread(&tmp, sizeof(tmp), 1, ptr);
fread(&tmp, sizeof(uint32_t), 1, ptr);
network->width[i] = tmp;
fread(&tmp, sizeof(tmp), 1, ptr);
network->depth[i+1] = tmp;
fread(&tmp, sizeof(uint32_t), 1, ptr);
network->depth[i] = tmp;
}
// Lecture du type de chaque couche
@ -183,6 +184,7 @@ Kernel* read_kernel(int type_couche, FILE* ptr) {
fread(&buffer, sizeof(buffer), 1, ptr);
kernel->activation = buffer[0];
kernel->linearisation = 0;
kernel->cnn->k_size = buffer[1];
kernel->cnn->rows = buffer[2];
kernel->cnn->columns = buffer[3];

67
src/cnn/utils.c Normal file
View File

@ -0,0 +1,67 @@
#include <stdlib.h>
#include <stdio.h>
#include <stdbool.h>
#include <string.h>
#include "../colors.h"
#include "include/struct.h"
#define checkEquals(var, name, indice) if (network1->var != network2->var) { printf_error("network1->" name " et network2->" name " ne sont pas égaux\n"); if (indice != -1) {printf(BOLDBLUE"[ INFO_ ]"RESET" indice: %d\n", indice);} return false; }
bool equals_networks(Network* network1, Network* network2) {
checkEquals(size, "size", -1);
checkEquals(initialisation, "initialisation", -1);
checkEquals(dropout, "dropout", -1);
for (int i=0; i < network1->size; i++) {
checkEquals(width[i], "input_width", i);
checkEquals(depth[i], "input_depth", i);
}
for (int i=0; i < network1->size; i++) {
checkEquals(kernel[i]->activation, "kernel[i]->activation", i);
if ((!network1->kernel[i]->cnn ^ !network2->kernel[i]->cnn) || (!network1->kernel[i]->nn ^ !network2->kernel[i]->nn)) {
printf(BOLDRED "[ ERROR ]" RESET "network1->kernel[%d] et network1->kernel[%d] diffèrent de type\n", i, i);
return false;
}
if (!network1->kernel[i]->cnn && !network1->kernel[i]->nn) {
// Type Pooling
// checkEquals(kernel[i]->linearisation, "kernel[i]->linearisation", i);
} else if (!network1->kernel[i]->cnn) {
// Type NN
checkEquals(kernel[i]->nn->input_units, "kernel[i]->nn->input_units", i);
checkEquals(kernel[i]->nn->output_units, "kernel[i]->nn->output_units", i);
for (int j=0; j < network1->kernel[i]->nn->output_units; j++) {
checkEquals(kernel[i]->nn->bias[j], "kernel[i]->nn->bias[j]", j);
}
for (int j=0; j < network1->kernel[i]->nn->input_units; j++) {
for (int k=0; k < network1->kernel[i]->nn->output_units; k++) {
checkEquals(kernel[i]->nn->weights[j][k], "kernel[i]->nn->weights[j][k]", k);
}
}
} else {
// Type CNN
checkEquals(kernel[i]->cnn->k_size, "kernel[i]->k_size", i);
checkEquals(kernel[i]->cnn->rows, "kernel[i]->rows", i);
checkEquals(kernel[i]->cnn->columns, "kernel[i]->columns", i);
for (int j=0; j < network1->kernel[i]->cnn->columns; j++) {
for (int k=0; k < network1->kernel[i]->cnn->k_size; k++) {
for (int l=0; l < network1->kernel[i]->cnn->k_size; l++) {
checkEquals(kernel[i]->cnn->bias[j][k][l], "kernel[i]->cnn->bias[j][k][l]", l);
}
}
}
for (int j=0; j < network1->kernel[i]->cnn->rows; j++) {
for (int k=0; k < network1->kernel[i]->cnn->columns; k++) {
for (int l=0; l < network1->kernel[i]->cnn->k_size; l++) {
for (int m=0; m < network1->kernel[i]->cnn->k_size; m++) {
checkEquals(kernel[i]->cnn->w[j][k][l][m], "kernel[i]->cnn->bias[j][k][l][m]", m);
}
}
}
}
}
}
return true;
}