tipe/src/cnn/cnn.c

147 lines
4.6 KiB
C
Raw Normal View History

2022-06-30 10:27:42 +02:00
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
2022-10-02 20:31:20 +02:00
#include <float.h> // Is it used ?
2022-09-28 10:20:08 +02:00
#include "../colors.h"
2022-09-26 18:00:31 +02:00
#include "include/initialisation.h"
#include "function.c"
#include "creation.c"
#include "make.c"
2022-09-30 15:54:21 +02:00
#include "include/cnn.h"
2022-06-30 10:27:42 +02:00
2022-07-05 08:13:25 +02:00
// Augmente les dimensions de l'image d'entrée
#define PADDING_INPUT 2
2022-06-30 10:27:42 +02:00
int will_be_drop(int dropout_prob) {
return (rand() % 100) < dropout_prob;
2022-06-30 10:27:42 +02:00
}
void write_image_in_network_32(int** image, int height, int width, float** input) {
2022-10-07 14:26:36 +02:00
int padding = (32 - height)/2;
for (int i=0; i < padding; i++) {
for (int j=0; j < 32; j++) {
input[i][j] = 0.;
input[31-i][j] = 0.;
input[j][i] = 0.;
input[j][31-i] = 0.;
}
}
for (int i=0; i < width; i++) {
for (int j=0; j < height; j++) {
input[i+2][j+2] = (float)image[i][j] / 255.0f;
2022-06-30 10:27:42 +02:00
}
}
}
void forward_propagation(Network* network) {
2022-10-02 20:31:20 +02:00
int activation, input_depth, input_width, output_depth, output_width;
2022-09-19 18:39:49 +02:00
int n = network->size;
float*** input;
float*** output;
2022-09-19 18:39:49 +02:00
Kernel* k_i;
for (int i=0; i < n-1; i++) {
2022-10-02 20:31:20 +02:00
// Transférer les informations de 'input' à 'output'
2022-09-19 18:39:49 +02:00
k_i = network->kernel[i];
2022-10-02 20:31:20 +02:00
input = network->input[i];
2022-09-19 18:39:49 +02:00
input_depth = network->depth[i];
2022-10-02 20:31:20 +02:00
input_width = network->width[i];
output = network->input[i+1];
2022-09-19 18:39:49 +02:00
output_depth = network->depth[i+1];
2022-10-02 20:31:20 +02:00
output_width = network->width[i+1];
2022-09-30 15:50:29 +02:00
activation = k_i->activation;
2022-09-19 18:39:49 +02:00
2022-10-07 15:32:54 +02:00
if (k_i->cnn) { // Convolution
2022-10-02 20:31:20 +02:00
make_convolution(k_i->cnn, input, output, output_width);
2022-09-30 15:50:29 +02:00
choose_apply_function_matrix(activation, output, output_depth, output_width);
2022-06-30 10:27:42 +02:00
}
2022-10-07 15:32:54 +02:00
else if (k_i->nn) { // Full connection
2022-10-02 20:31:20 +02:00
if (input_depth==1) { // Vecteur -> Vecteur
make_dense(k_i->nn, input[0][0], output[0][0], input_width, output_width);
} else { // Matrice -> vecteur
make_dense_linearised(k_i->nn, input, output[0][0], input_depth, input_width, output_width);
}
2022-09-30 15:50:29 +02:00
choose_apply_function_vector(activation, output, output_width);
2022-06-30 10:27:42 +02:00
}
2022-10-02 20:31:20 +02:00
else { // Pooling
2022-09-19 18:39:49 +02:00
if (n-2==i) {
2022-10-02 20:31:20 +02:00
printf("Le réseau ne peut pas finir par une pooling layer\n");
2022-06-30 10:27:42 +02:00
return;
2022-10-02 20:31:20 +02:00
} else { // Pooling sur une matrice
2022-09-19 18:39:49 +02:00
make_average_pooling(input, output, activation/100, output_depth, output_width);
2022-06-30 10:27:42 +02:00
}
2022-05-13 15:28:45 +02:00
}
}
}
2022-06-30 10:27:42 +02:00
2022-10-02 20:31:20 +02:00
void backward_propagation(Network* network, float wanted_number) {
2022-09-28 10:20:08 +02:00
printf_warning("Appel de backward_propagation, incomplet\n");
2022-06-30 10:27:42 +02:00
float* wanted_output = generate_wanted_output(wanted_number);
2022-10-02 20:31:20 +02:00
int n = network->size;
2022-10-07 15:32:54 +02:00
float loss = compute_mean_squared_error(network->input[n][0][0], wanted_output, network->width[n]);
2022-10-02 20:31:20 +02:00
int activation, input_depth, input_width, output_depth, output_width;
float*** input;
float*** output;
Kernel* k_i;
Kernel* k_i_1;
2022-06-30 10:27:42 +02:00
2022-10-02 20:31:20 +02:00
for (int i=n-3; i >= 0; i--) {
// Modifie 'k_i' à partir d'une comparaison d'informations entre 'input' et 'output'
k_i = network->kernel[i];
k_i_1 = network->kernel[i+1];
input = network->input[i];
input_depth = network->depth[i];
input_width = network->width[i];
output = network->input[i+1];
output_depth = network->depth[i+1];
output_width = network->width[i+1];
activation = k_i->activation;
2022-06-30 10:27:42 +02:00
2022-10-02 20:31:20 +02:00
//if convolution
// else if dense (linearised or not)
// else pooling
2022-06-30 10:27:42 +02:00
}
free(wanted_output);
}
2022-10-07 15:32:54 +02:00
float compute_mean_squared_error(float* output, float* wanted_output, int len) {
if (len==0) {
printf("Erreur MSE: la longueur de la sortie est de 0 -> division par 0 impossible\n");
return 0.;
}
float loss=0.;
for (int i=0; i < len ; i++) {
loss += (output[i]-wanted_output[i])*(output[i]-wanted_output[i]);
}
return loss/len;
}
2022-06-30 10:27:42 +02:00
float compute_cross_entropy_loss(float* output, float* wanted_output, int len) {
float loss=0.;
for (int i=0; i < len ; i++) {
2022-06-30 10:27:42 +02:00
if (wanted_output[i]==1) {
if (output[i]==0.) {
loss -= log(FLT_EPSILON);
}
else {
loss -= log(output[i]);
}
}
}
return loss;
}
float* generate_wanted_output(float wanted_number) {
float* wanted_output = (float*)malloc(sizeof(float)*10);
for (int i=0; i < 10; i++) {
2022-06-30 10:27:42 +02:00
if (i==wanted_number) {
wanted_output[i]=1;
}
else {
wanted_output[i]=0;
}
}
return wanted_output;
}