2022-06-30 10:27:42 +02:00
|
|
|
#include <stdlib.h>
|
|
|
|
#include <stdio.h>
|
|
|
|
#include <math.h>
|
2022-10-02 20:31:20 +02:00
|
|
|
#include <float.h> // Is it used ?
|
2022-09-28 10:20:08 +02:00
|
|
|
|
|
|
|
#include "../colors.h"
|
2022-09-26 18:00:31 +02:00
|
|
|
#include "include/initialisation.h"
|
2022-09-09 17:39:07 +02:00
|
|
|
#include "function.c"
|
|
|
|
#include "creation.c"
|
|
|
|
#include "make.c"
|
|
|
|
|
2022-09-30 15:54:21 +02:00
|
|
|
#include "include/cnn.h"
|
2022-06-30 10:27:42 +02:00
|
|
|
|
2022-07-05 08:13:25 +02:00
|
|
|
// Augmente les dimensions de l'image d'entrée
|
2022-09-09 17:39:07 +02:00
|
|
|
#define PADDING_INPUT 2
|
2022-06-30 10:27:42 +02:00
|
|
|
|
|
|
|
int will_be_drop(int dropout_prob) {
|
2022-09-09 17:39:07 +02:00
|
|
|
return (rand() % 100) < dropout_prob;
|
2022-06-30 10:27:42 +02:00
|
|
|
}
|
|
|
|
|
2022-09-09 17:39:07 +02:00
|
|
|
void write_image_in_network_32(int** image, int height, int width, float** input) {
|
|
|
|
for (int i=0; i < height+2*PADDING_INPUT; i++) {
|
2022-09-16 14:53:35 +02:00
|
|
|
for (int j=0; j < width+2*PADDING_INPUT; j++) {
|
|
|
|
if (i < PADDING_INPUT || i >= height+PADDING_INPUT || j < PADDING_INPUT || j >= width+PADDING_INPUT) {
|
2022-06-30 10:27:42 +02:00
|
|
|
input[i][j] = 0.;
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
input[i][j] = (float)image[i][j] / 255.0f;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void forward_propagation(Network* network) {
|
2022-10-02 20:31:20 +02:00
|
|
|
int activation, input_depth, input_width, output_depth, output_width;
|
2022-09-19 18:39:49 +02:00
|
|
|
int n = network->size;
|
|
|
|
float*** input;
|
2022-09-09 17:39:07 +02:00
|
|
|
float*** output;
|
2022-09-19 18:39:49 +02:00
|
|
|
Kernel* k_i;
|
|
|
|
for (int i=0; i < n-1; i++) {
|
2022-10-02 20:31:20 +02:00
|
|
|
// Transférer les informations de 'input' à 'output'
|
2022-09-19 18:39:49 +02:00
|
|
|
k_i = network->kernel[i];
|
2022-10-02 20:31:20 +02:00
|
|
|
input = network->input[i];
|
2022-09-19 18:39:49 +02:00
|
|
|
input_depth = network->depth[i];
|
2022-10-02 20:31:20 +02:00
|
|
|
input_width = network->width[i];
|
|
|
|
output = network->input[i+1];
|
2022-09-19 18:39:49 +02:00
|
|
|
output_depth = network->depth[i+1];
|
2022-10-02 20:31:20 +02:00
|
|
|
output_width = network->width[i+1];
|
2022-09-30 15:50:29 +02:00
|
|
|
activation = k_i->activation;
|
2022-09-19 18:39:49 +02:00
|
|
|
|
2022-10-02 20:31:20 +02:00
|
|
|
if (k_i->cnn!=NULL) { // Convolution
|
|
|
|
printf("\n(%d)-Convolution of cnn: %dx%dx%d -> %dx%dx%d\n", i, input_depth, input_width, input_width, output_depth, output_width, output_width);
|
|
|
|
make_convolution(k_i->cnn, input, output, output_width);
|
2022-09-30 15:50:29 +02:00
|
|
|
choose_apply_function_matrix(activation, output, output_depth, output_width);
|
2022-06-30 10:27:42 +02:00
|
|
|
}
|
2022-10-02 20:31:20 +02:00
|
|
|
else if (k_i->nn!=NULL) { // Full connection
|
|
|
|
if (input_depth==1) { // Vecteur -> Vecteur
|
|
|
|
printf("\n(%d)-Densification of nn: %dx%dx%d -> %dx%dx%d\n", i, 1, 1, input_width, 1, 1, output_width);
|
|
|
|
make_dense(k_i->nn, input[0][0], output[0][0], input_width, output_width);
|
|
|
|
} else { // Matrice -> vecteur
|
|
|
|
printf("\n(%d)-Densification linearised of nn: %dx%dx%d -> %dx%dx%d\n", i, input_depth, input_width, input_width, 1, 1, output_width);
|
|
|
|
make_dense_linearised(k_i->nn, input, output[0][0], input_depth, input_width, output_width);
|
|
|
|
}
|
2022-09-30 15:50:29 +02:00
|
|
|
choose_apply_function_vector(activation, output, output_width);
|
2022-06-30 10:27:42 +02:00
|
|
|
}
|
2022-10-02 20:31:20 +02:00
|
|
|
else { // Pooling
|
2022-09-19 18:39:49 +02:00
|
|
|
if (n-2==i) {
|
2022-10-02 20:31:20 +02:00
|
|
|
printf("Le réseau ne peut pas finir par une pooling layer\n");
|
2022-06-30 10:27:42 +02:00
|
|
|
return;
|
2022-10-02 20:31:20 +02:00
|
|
|
} else { // Pooling sur une matrice
|
|
|
|
printf("\n(%d)-Average pooling: %dx%dx%d -> %dx%dx%d\n", i, input_depth, input_width, input_width, output_depth, output_width, output_width);
|
2022-09-19 18:39:49 +02:00
|
|
|
make_average_pooling(input, output, activation/100, output_depth, output_width);
|
2022-06-30 10:27:42 +02:00
|
|
|
}
|
2022-05-13 15:28:45 +02:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
2022-06-30 10:27:42 +02:00
|
|
|
|
2022-10-02 20:31:20 +02:00
|
|
|
void backward_propagation(Network* network, float wanted_number) {
|
2022-09-28 10:20:08 +02:00
|
|
|
printf_warning("Appel de backward_propagation, incomplet\n");
|
2022-06-30 10:27:42 +02:00
|
|
|
float* wanted_output = generate_wanted_output(wanted_number);
|
2022-10-02 20:31:20 +02:00
|
|
|
int n = network->size;
|
2022-09-12 17:56:44 +02:00
|
|
|
float loss = compute_cross_entropy_loss(network->input[n][0][0], wanted_output, network->width[n]);
|
2022-10-02 20:31:20 +02:00
|
|
|
int activation, input_depth, input_width, output_depth, output_width;
|
|
|
|
float*** input;
|
|
|
|
float*** output;
|
|
|
|
Kernel* k_i;
|
|
|
|
Kernel* k_i_1;
|
2022-06-30 10:27:42 +02:00
|
|
|
|
2022-10-02 20:31:20 +02:00
|
|
|
for (int i=n-3; i >= 0; i--) {
|
|
|
|
// Modifie 'k_i' à partir d'une comparaison d'informations entre 'input' et 'output'
|
|
|
|
k_i = network->kernel[i];
|
|
|
|
k_i_1 = network->kernel[i+1];
|
|
|
|
input = network->input[i];
|
|
|
|
input_depth = network->depth[i];
|
|
|
|
input_width = network->width[i];
|
|
|
|
output = network->input[i+1];
|
|
|
|
output_depth = network->depth[i+1];
|
|
|
|
output_width = network->width[i+1];
|
|
|
|
activation = k_i->activation;
|
2022-06-30 10:27:42 +02:00
|
|
|
|
2022-10-02 20:31:20 +02:00
|
|
|
//if convolution
|
|
|
|
// else if dense (linearised or not)
|
|
|
|
// else pooling
|
2022-06-30 10:27:42 +02:00
|
|
|
}
|
|
|
|
free(wanted_output);
|
|
|
|
}
|
|
|
|
|
|
|
|
float compute_cross_entropy_loss(float* output, float* wanted_output, int len) {
|
|
|
|
float loss=0.;
|
2022-09-09 17:39:07 +02:00
|
|
|
for (int i=0; i < len ; i++) {
|
2022-06-30 10:27:42 +02:00
|
|
|
if (wanted_output[i]==1) {
|
|
|
|
if (output[i]==0.) {
|
|
|
|
loss -= log(FLT_EPSILON);
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
loss -= log(output[i]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return loss;
|
|
|
|
}
|
|
|
|
|
|
|
|
float* generate_wanted_output(float wanted_number) {
|
2022-09-09 17:39:07 +02:00
|
|
|
float* wanted_output = (float*)malloc(sizeof(float)*10);
|
|
|
|
for (int i=0; i < 10; i++) {
|
2022-06-30 10:27:42 +02:00
|
|
|
if (i==wanted_number) {
|
|
|
|
wanted_output[i]=1;
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
wanted_output[i]=0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return wanted_output;
|
2022-09-09 17:39:07 +02:00
|
|
|
}
|