advent-of-code/aoc_utils/graph.py
augustin64 e5ba1cc940 Add 2023 day 23[2]
Graph compression based solution
2023-12-23 17:50:40 +01:00

106 lines
3.2 KiB
Python

from collections.abc import Mapping
from typing import TypeVar, Optional, Iterator, Generic
T = TypeVar("T")
class Graph(Mapping, Generic[T]):
"""Non oriented graph"""
def __init__(self) -> None:
self._edges: dict = {}
def __str__(self) -> str:
return "\n".join(
(f"{key} -> {self._edges[key]}" for key in self._edges)
)
def __len__(self) -> int:
return len(self._edges)
def __getitem__(self, e) -> list[tuple[T, int]]:
return self._edges[e]
def __iter__(self) -> Iterator[object]:
return iter(self._edges)
def __contains__(self, item: object) -> bool:
return item in self._edges.keys()
def add_node(self, u: T) -> None:
if u in self._edges.keys():
raise IndexError
self._edges[u] = set()
def add_edge(self, source: T, target: T, weight=None) -> None:
if source not in self._edges:
self.add_node(source)
if target not in self._edges:
self.add_node(target)
if weight is None:
weight = 1
self._edges[source].add((target, weight))
self._edges[target].add((source, weight))
def remove_edges(self, source: T, target: T) -> None:
for vertice in frozenset(self._edges[source]):
if vertice[0] == target:
self._edges[source] -= {vertice}
for vertice in frozenset(self._edges[target]):
if vertice[0] == source:
self._edges[target] -= {vertice}
def remove_node(self, u: T) -> None:
if u not in self:
raise IndexError
for node in self:
self.remove_edges(u, node)
self._edges.pop(u, None)
def compress(self) -> None:
"""Remove nodes that have only 2 edges to get a minimal representation"""
initial_size = len(self)
for node in self._edges.copy():
if len(self[node]) == 2:
weight = sum((edge[1] for edge in self[node]))
self.add_edge(list(self[node])[0][0], list(self[node])[1][0], weight=weight)
self.remove_node(node)
return len(self)/initial_size
def bellman_ford(self, source: T) -> \
tuple[dict[T, int], dict[T, Optional[T]]]:
# Initialize distances and predecessors
dist_max = len(self)*max(
{max({j[1] for j in i}) for i in self._edges.values()}
)
distances = {node: dist_max for node in self._edges}
predecessors = {
node: None for node in self._edges
} # ! The only problem is here for the typing system
distances[source] = 0
# Relax edges repeatedly to find the shortest paths
for _ in range(len(self._edges) - 1):
for u in self._edges:
for v, weight in self._edges[u]:
if distances[u] + weight < distances[v]:
distances[v] = distances[u] + weight
predecessors[v] = u
# Check for negative cycles
for u in self._edges:
for v, weight in self._edges[u]:
if distances[u] + weight < distances[v]:
raise ValueError("Graph contains a negative cycle")
return distances, predecessors