From 94245dfb68b0c79d37852ab6e0d7ef5f75f5bdbb Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Fran=C3=A7ois=20Colin=20de=20Verdi=C3=A8re?= Date: Wed, 26 Mar 2025 09:58:28 +0100 Subject: [PATCH] debut pattern mining --- .ipynb_checkpoints/cheese-checkpoint.ipynb | 1970 ++--- .ipynb_checkpoints/cheeses-checkpoint.csv | 1188 +++ .../locations_to_gps-checkpoint.json | 1 + cheese.ipynb | 6832 ++++++++++++----- locations_to_gps.json | 1 + 5 files changed, 6683 insertions(+), 3309 deletions(-) create mode 100644 .ipynb_checkpoints/cheeses-checkpoint.csv create mode 100644 .ipynb_checkpoints/locations_to_gps-checkpoint.json create mode 100644 locations_to_gps.json diff --git a/.ipynb_checkpoints/cheese-checkpoint.ipynb b/.ipynb_checkpoints/cheese-checkpoint.ipynb index 88c8de1..d9e8d25 100644 --- a/.ipynb_checkpoints/cheese-checkpoint.ipynb +++ b/.ipynb_checkpoints/cheese-checkpoint.ipynb @@ -10,7 +10,7 @@ }, { "cell_type": "code", - "execution_count": 43, + "execution_count": 1, "id": "7f4f2b89-8257-468c-9f5e-a77e11b8b8ff", "metadata": {}, "outputs": [], @@ -27,7 +27,7 @@ }, { "cell_type": "code", - "execution_count": 44, + "execution_count": 2, "id": "1a0afba8-692b-4377-a2ce-5114983e3bbb", "metadata": {}, "outputs": [ @@ -403,7 +403,7 @@ "[1187 rows x 19 columns]" ] }, - "execution_count": 44, + "execution_count": 2, "metadata": {}, "output_type": "execute_result" } @@ -418,12 +418,12 @@ "id": "bf3b548c-5ac4-4126-9ae9-5578ad158015", "metadata": {}, "source": [ - "## Cleaning" + "## Cleaning and pre-processing" ] }, { "cell_type": "code", - "execution_count": 45, + "execution_count": 3, "id": "2018aac2-6f3d-489a-b5d0-90b7c7793076", "metadata": {}, "outputs": [ @@ -431,7 +431,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "{'pale yellow', 'blue', 'brownish yellow', 'ivory', 'orange', 'brown', 'straw', 'blue-grey', 'cream', 'pale white', 'red', 'green', nan, 'golden yellow', 'white', 'golden orange', 'pink and white', 'yellow'}\n" + "{'blue', 'yellow', 'white', 'golden yellow', 'pink and white', 'orange', 'pale yellow', nan, 'ivory', 'green', 'straw', 'red', 'brownish yellow', 'pale white', 'brown', 'golden orange', 'blue-grey', 'cream'}\n" ] }, { @@ -819,7 +819,7 @@ "[142 rows x 19 columns]" ] }, - "execution_count": 45, + "execution_count": 3, "metadata": {}, "output_type": "execute_result" } @@ -831,7 +831,7 @@ }, { "cell_type": "code", - "execution_count": 46, + "execution_count": 4, "id": "a0a77563-518e-4808-b744-9fc0c76763fe", "metadata": {}, "outputs": [ @@ -851,7 +851,7 @@ }, { "cell_type": "code", - "execution_count": 47, + "execution_count": 5, "id": "c8489ffa-1067-4eb7-b65a-2fa18fdb4b04", "metadata": {}, "outputs": [], @@ -866,7 +866,7 @@ }, { "cell_type": "code", - "execution_count": 48, + "execution_count": 6, "id": "5379265a-cd49-41fa-845c-bfae33bb8f5a", "metadata": {}, "outputs": [ @@ -1144,7 +1144,7 @@ "[1187 rows x 13 columns]" ] }, - "execution_count": 48, + "execution_count": 6, "metadata": {}, "output_type": "execute_result" } @@ -1155,7 +1155,7 @@ }, { "cell_type": "code", - "execution_count": 49, + "execution_count": 7, "id": "633ed80e-e416-41f6-ae58-b86ce4c132af", "metadata": {}, "outputs": [ @@ -1165,30 +1165,12 @@ "text": [ "1181 rows remaining\n" ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_13743/3522053431.py:2: SettingWithCopyWarning: \n", - "A value is trying to be set on a copy of a slice from a DataFrame.\n", - "Try using .loc[row_indexer,col_indexer] = value instead\n", - "\n", - "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", - " data[\"country\"]=data[\"country\"].fillna(\"\")\n", - "/tmp/ipykernel_13743/3522053431.py:3: SettingWithCopyWarning: \n", - "A value is trying to be set on a copy of a slice from a DataFrame.\n", - "Try using .loc[row_indexer,col_indexer] = value instead\n", - "\n", - "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", - " data[\"region\"]=data[\"region\"].fillna(\"\")\n" - ] } ], "source": [ "data=data.dropna(subset=[\"country\",\"region\"], how=\"all\")\n", - "data[\"country\"]=data[\"country\"].fillna(\"\")\n", - "data[\"region\"]=data[\"region\"].fillna(\"\")\n", + "data=data.fillna(value={\"country\":\"\"})\n", + "data=data.fillna(value={\"region\":\"\"})\n", "print(f\"{len(data)} rows remaining\")" ] }, @@ -1202,37 +1184,10 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 8, "id": "5a4c0e30-8535-498b-9a9e-0d7d232d4eb7", "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": 50, - "id": "7ef7494b-ff08-40a5-890f-e0f718cf2842", - "metadata": {}, - "outputs": [], - "source": [ - "data.loc[data.country.str.contains(\"England, Great Britain, United Kingdom\")|data.country.str.contains(\"England, United Kingdom\"),\"country\"]=\"England\"\n", - "data.loc[data.country.str.contains(\"Scotland\"),\"country\"]=\"Scotland\"\n", - "data.loc[data.country.str.contains(\"Great Britain, United Kingdom, Wales\")|data.country.str.contains(\"United Kingdom, Wales\"),\"country\"]=\"Wales\"\n" - ] - }, - { - "cell_type": "code", - "execution_count": 51, - "id": "fb044984-c33c-492c-91a2-4e9fff29ceb3", - "metadata": {}, "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "39\n" - ] - }, { "data": { "text/html": [ @@ -1271,899 +1226,272 @@ " \n", " \n", " \n", - " 12\n", - " Ackawi\n", - " cow, goat, sheep\n", - " Cyprus, Egypt, Israel, Jordan, Lebanon, Middle...\n", - " +\n", - " Feta\n", - " soft, brined\n", - " elastic, smooth, springy\n", - " natural\n", - " white\n", - " mild, milky, salty\n", - " mild, milky\n", - " False\n", - " False\n", - " \n", - " \n", - " 116\n", - " Baladi\n", - " cow, goat, sheep\n", - " Lebanon, Middle East\n", - " \n", - " NaN\n", - " fresh soft, artisan\n", - " creamy, dense, smooth\n", - " rindless\n", - " white\n", - " buttery, mild, salty, sweet\n", - " fresh\n", - " False\n", - " False\n", - " \n", - " \n", - " 160\n", - " Beemster 2% Milk\n", + " 0\n", + " Aarewasser\n", " cow\n", - " Canada, Denmark, France, Germany, Netherlands,...\n", + " Switzerland\n", " \n", " NaN\n", " semi-soft\n", - " smooth\n", - " NaN\n", - " NaN\n", - " nutty\n", - " aromatic, floral, fruity\n", - " False\n", - " False\n", - " \n", - " \n", - " 212\n", - " Blissful Blocks\n", - " NaN\n", - " Canada, United States\n", - " \n", - " Cheddar\n", - " hard\n", - " creamy, crumbly\n", - " plastic\n", - " yellow\n", - " creamy, savory, sharp, spicy\n", - " NaN\n", - " True\n", - " False\n", - " \n", - " \n", - " 213\n", - " Blissful Toppings\n", - " NaN\n", - " Canada, United States\n", - " \n", - " Parmesan\n", - " soft\n", - " crumbly\n", - " artificial\n", - " yellow\n", - " savory, sharp\n", - " NaN\n", - " True\n", - " False\n", - " \n", - " \n", - " 243\n", - " Bootlegger\n", - " cow, sheep\n", - " Canada, Italy\n", - " Lombardy\n", - " NaN\n", - " hard, artisan\n", - " crumbly, firm\n", - " natural\n", - " pale yellow\n", - " fruity, full-flavored, strong\n", - " floral\n", - " NaN\n", - " NaN\n", - " \n", - " \n", - " 262\n", - " Brebis d'Azure\n", - " sheep\n", - " Canada, Italy\n", - " Lombardy\n", - " Blue\n", - " semi-hard, artisan, blue-veined\n", - " soft\n", - " natural\n", - " pale yellow\n", - " sharp\n", - " aromatic\n", - " NaN\n", - " NaN\n", - " \n", - " \n", - " 297\n", - " Brunost\n", - " cow, goat\n", - " Denmark, Finland, Germany, Iceland, Norway, Sw...\n", - " \n", - " NaN\n", - " semi-soft, whey\n", - " dense\n", - " natural\n", - " brown\n", - " caramel, sweet\n", - " NaN\n", - " NaN\n", - " NaN\n", - " \n", - " \n", - " 300\n", - " Bryndza\n", - " sheep\n", - " Hungary, Poland, Slovakia\n", - " \n", - " NaN\n", - " soft, artisan\n", - " spreadable\n", - " rindless\n", - " white\n", - " mild, salty\n", - " NaN\n", - " NaN\n", - " NaN\n", - " \n", - " \n", - " 311\n", - " Burrata\n", - " water buffalo\n", - " Italy, United States\n", - " Apulia\n", - " Mozzarella\n", - " fresh soft, artisan\n", - " creamy, stringy\n", - " leaf wrapped\n", - " white\n", - " buttery, milky\n", - " fresh, milky\n", - " False\n", - " False\n", - " \n", - " \n", - " 316\n", - " Butterkase\n", - " cow\n", - " Austria, Germany\n", - " \n", - " NaN\n", - " semi-soft\n", - " creamy, smooth, spreadable\n", - " natural\n", - " pale yellow\n", - " buttery, mild\n", - " NaN\n", - " False\n", - " False\n", - " \n", - " \n", - " 367\n", - " Cap Cressy\n", - " goat\n", - " Canada, Italy\n", - " Lombardy\n", - " NaN\n", - " semi-hard, artisan, smear-ripened\n", - " compact, dense\n", + " buttery\n", " washed\n", - " pale yellow\n", - " mellow, savory, sweet\n", - " lactic\n", - " NaN\n", - " NaN\n", - " \n", - " \n", - " 375\n", - " Capri Blu\n", - " goat\n", - " Canada, Italy\n", - " Lombardy\n", - " Blue\n", - " soft, blue-veined\n", - " creamy, soft\n", - " natural\n", - " pale yellow\n", - " creamy, subtle, sweet\n", - " goaty\n", - " NaN\n", - " NaN\n", - " \n", - " \n", - " 377\n", - " Caprice\n", - " goat\n", - " Canada, Italy\n", - " Lombardy\n", - " NaN\n", - " soft\n", - " creamy, smooth\n", - " natural\n", - " white\n", - " subtle\n", - " goaty\n", - " NaN\n", - " NaN\n", - " \n", - " \n", - " 407\n", - " Casu marzu\n", - " sheep\n", - " France, Italy\n", - " Sardinia (Italy), Southern Corsica (France)\n", - " NaN\n", - " soft, soft-ripened\n", - " soft-ripened\n", - " natural\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " \n", - " \n", - " 437\n", - " Cheese Curds\n", - " NaN\n", - " Canada, India, United States\n", - " \n", - " Cheddar\n", - " fresh firm\n", - " firm, springy\n", - " natural\n", - " white\n", - " mild, milky\n", - " fresh\n", - " NaN\n", - " NaN\n", - " \n", - " \n", - " 445\n", - " Chhurpi\n", - " cow, yak\n", - " China, Nepal, Tibet\n", - " \n", - " Cottage\n", - " soft, hard, artisan\n", - " dense\n", - " natural\n", - " pale yellow\n", - " tangy\n", - " NaN\n", - " NaN\n", - " NaN\n", - " \n", - " \n", - " 455\n", - " Chura Kampo\n", - " yak\n", - " China, Tibet\n", - " Tibet\n", - " NaN\n", - " hard, artisan\n", - " dense, dry, firm\n", - " natural\n", - " NaN\n", - " NaN\n", - " aromatic\n", - " NaN\n", - " NaN\n", - " \n", - " \n", - " 508\n", - " Cottage Cheese\n", - " cow\n", - " United Kingdom, United States\n", - " \n", - " Cottage\n", - " soft, artisan, processed\n", - " creamy, crumbly\n", - " rindless\n", - " white\n", + " yellow\n", " sweet\n", - " NaN\n", - " True\n", + " buttery\n", + " False\n", " False\n", " \n", " \n", - " 512\n", - " Counting Sheep…and Goats...\n", - " cow, goat, sheep\n", - " Canada, Italy\n", - " Lombardy\n", - " NaN\n", - " soft, soft-ripened\n", - " creamy, soft\n", - " NaN\n", - " white\n", - " creamy, subtle, sweet\n", - " nutty\n", - " NaN\n", - " NaN\n", - " \n", - " \n", - " 524\n", - " Cream Cheesy Bliss\n", - " NaN\n", - " Canada, United States\n", - " \n", - " NaN\n", - " soft\n", - " creamy, spreadable\n", - " artificial\n", - " white\n", - " creamy, garlicky, herbaceous, sweet\n", - " rich\n", - " True\n", - " False\n", - " \n", - " \n", - " 537\n", - " Cressy Blu\n", - " cow\n", - " Canada, Italy\n", - " Lombardy\n", - " Blue\n", - " semi-hard, blue-veined\n", - " creamy, crumbly, firm\n", - " natural\n", - " pale yellow\n", - " creamy, savory, sweet\n", - " NaN\n", - " NaN\n", - " NaN\n", - " \n", - " \n", - " 569\n", - " La Couronne - Fort Aged Comté\n", - " cow\n", - " France, Switzerland\n", - " Franche Comté\n", - " NaN\n", - " semi-hard\n", - " dense\n", - " NaN\n", - " pale yellow\n", - " caramel, nutty, sweet\n", - " rich\n", - " NaN\n", - " NaN\n", - " \n", - " \n", - " 601\n", - " Lamb Chopper\n", + " 1\n", + " Abbaye de Belloc\n", " sheep\n", - " Netherlands, United States\n", - " California\n", - " Gouda\n", - " hard\n", - " dense, firm, smooth\n", - " waxed\n", - " ivory\n", - " buttery, caramel, creamy, nutty, sweet\n", - " mild, sweet\n", - " True\n", - " False\n", - " \n", - " \n", - " 621\n", - " Le Conquerant Demi Pont L'eveque\n", - " cow\n", - " Australia, France\n", - " \n", + " France\n", + " Pays Basque\n", " NaN\n", - " soft, artisan\n", - " chalky, creamy, soft\n", - " washed\n", - " NaN\n", - " creamy, mild\n", - " pungent\n", - " NaN\n", - " NaN\n", - " \n", - " \n", - " 646\n", - " Limburger\n", - " cow\n", - " Belgium, Germany, Netherlands\n", - " Duchy of Limburg\n", - " NaN\n", - " semi-soft, smear-ripened\n", - " crumbly, firm, smooth\n", - " washed\n", - " straw\n", - " grassy, mild, mushroomy\n", - " stinky\n", - " False\n", - " False\n", - " \n", - " \n", - " 675\n", - " Lunetta\n", - " cow\n", - " Canada, Italy\n", - " Lombardy\n", - " NaN\n", - " fresh soft, artisan\n", - " creamy\n", + " semi-hard, artisan\n", + " creamy, dense, firm\n", " natural\n", - " white\n", - " creamy, salty\n", - " aromatic, fresh\n", - " NaN\n", - " NaN\n", - " \n", - " \n", - " 701\n", - " Mamirolle\n", - " cow\n", - " Canada, France\n", - " Plessisville, Quebec\n", - " NaN\n", - " semi-soft, artisan\n", - " chewy, supple\n", - " washed\n", - " ivory\n", - " buttery, fruity, salty, sweet\n", - " earthy, pungent\n", - " False\n", - " False\n", - " \n", - " \n", - " 776\n", - " Monastery Cheeses\n", - " cow\n", - " Belgium, Canada, France, Switzerland, United S...\n", - " \n", - " NaN\n", - " soft, semi-soft, brined\n", - " chalky, creamy, firm, grainy\n", - " washed\n", - " golden yellow\n", - " mild, pungent\n", - " pungent, strong\n", - " False\n", - " False\n", - " \n", - " \n", - " 789\n", - " Monterey Jack\n", - " cow\n", - " Mexico, United States\n", - " Monterey, California\n", - " Monterey Jack\n", - " semi-hard\n", - " compact, creamy, firm, open, supple\n", - " NaN\n", - " pale yellow\n", - " buttery, mild\n", - " aromatic\n", - " NaN\n", - " NaN\n", - " \n", - " \n", - " 852\n", - " Paneer\n", - " cow, water buffalo\n", - " Bangladesh, India\n", - " \n", - " Cottage\n", - " fresh firm\n", - " crumbly, firm\n", - " rindless\n", - " white\n", - " milky\n", - " fresh, milky\n", - " True\n", - " False\n", - " \n", - " \n", - " 975\n", - " President Fat Free Feta\n", - " cow\n", - " France, United States\n", - " New York\n", - " Feta\n", - " firm, artisan, brined\n", - " crumbly\n", - " natural\n", - " white\n", - " herbaceous, salty, tangy\n", - " fresh\n", - " NaN\n", - " NaN\n", - " \n", - " \n", - " 1001\n", - " Purple's a Must\n", - " cow, goat\n", - " Canada, Italy\n", - " Lombardy\n", - " Blue\n", - " semi-hard, artisan, blue-veined\n", - " creamy, crumbly\n", - " mold ripened\n", - " pale yellow\n", - " full-flavored, strong\n", - " rich\n", - " NaN\n", - " NaN\n", - " \n", - " \n", - " 1082\n", - " Shanklish\n", - " cow, sheep\n", - " Egypt, Lebanon, Syria\n", - " \n", - " Feta\n", - " fresh firm, hard, artisan\n", - " creamy, crumbly, firm\n", - " mold ripened\n", - " white\n", - " sharp, spicy, strong\n", - " pungent, strong\n", - " False\n", - " False\n", - " \n", - " \n", - " 1099\n", - " Shredded Bliss\n", - " NaN\n", - " Canada, United States\n", - " \n", - " Mozzarella\n", - " semi-soft\n", - " elastic, smooth, springy, stringy\n", - " plastic\n", - " pale yellow\n", - " mild, milky\n", - " fresh, mild\n", - " True\n", - " False\n", - " \n", - " \n", - " 1106\n", - " Sirene\n", - " cow, goat, sheep\n", - " Albania, Bulgaria, Croatia, Greece, Israel, Ma...\n", - " Trakia\n", - " Feta\n", - " fresh soft, brined\n", - " crumbly, grainy, smooth\n", - " natural\n", - " white\n", - " lemony, salty, sharp, tangy\n", - " strong\n", - " False\n", - " False\n", - " \n", - " \n", - " 1108\n", - " Slices Of Bliss\n", - " NaN\n", - " Canada, United States\n", - " \n", - " Cheddar\n", - " soft\n", - " creamy\n", - " plastic\n", " yellow\n", - " creamy, savory, sharp, spicy\n", - " NaN\n", + " burnt caramel\n", + " lanoline\n", " True\n", " False\n", " \n", " \n", - " 1123\n", - " Sosha\n", - " goat, yak\n", - " China, Nepal, Tibet\n", - " Tibet\n", - " NaN\n", - " soft, artisan\n", - " creamy\n", - " natural\n", - " white\n", - " pungent, strong\n", - " pungent, strong\n", + " 2\n", + " Abbaye de Belval\n", + " cow\n", + " France\n", + " \n", " NaN\n", + " semi-hard\n", + " elastic\n", + " washed\n", + " ivory\n", " NaN\n", + " aromatic\n", + " False\n", + " False\n", " \n", " \n", - " 1173\n", - " Strawberry Moon\n", + " 3\n", + " Abbaye de Citeaux\n", " cow\n", - " Canada, Italy\n", - " Lombardy\n", + " France\n", + " Burgundy\n", " NaN\n", - " semi-hard, artisan, smear-ripened\n", - " compact, creamy, dense\n", + " semi-soft, artisan, brined\n", + " creamy, dense, smooth\n", " washed\n", - " straw\n", - " subtle, sweet\n", - " strong\n", + " white\n", + " acidic, milky, smooth\n", + " barnyardy, earthy\n", + " False\n", + " False\n", + " \n", + " \n", + " 4\n", + " Abbaye de Tamié\n", + " cow\n", + " France\n", + " Savoie\n", " NaN\n", + " soft, artisan\n", + " creamy, open, smooth\n", + " washed\n", + " white\n", + " fruity, nutty\n", + " perfumed, pungent\n", + " False\n", + " False\n", + " \n", + " \n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " \n", + " \n", + " 1182\n", + " Sveciaost\n", + " cow\n", + " Sweden\n", + " Low-laying regions\n", " NaN\n", + " semi-hard, brined\n", + " creamy, supple\n", + " rindless\n", + " pale yellow\n", + " acidic\n", + " NaN\n", + " False\n", + " False\n", + " \n", + " \n", + " 1183\n", + " Swag\n", + " goat\n", + " Australia\n", + " South Australia\n", + " NaN\n", + " fresh firm, artisan\n", + " creamy, crumbly\n", + " ash coated\n", + " white\n", + " acidic, creamy\n", + " fresh\n", + " True\n", + " False\n", + " \n", + " \n", + " 1184\n", + " Swaledale\n", + " sheep\n", + " England\n", + " Swaledale, North Yorkshire\n", + " NaN\n", + " hard\n", + " semi firm\n", + " NaN\n", + " yellow\n", + " smooth, sweet\n", + " floral\n", + " True\n", + " False\n", + " \n", + " \n", + " 1185\n", + " Sweet Style Swiss\n", + " NaN\n", + " Switzerland\n", + " \n", + " NaN\n", + " semi-hard, artisan\n", + " firm, supple\n", + " waxed\n", + " NaN\n", + " nutty\n", + " nutty, sweet\n", + " False\n", + " False\n", + " \n", + " \n", + " 1186\n", + " Swiss cheese\n", + " cow\n", + " United States\n", + " \n", + " Swiss Cheese\n", + " hard, artisan, processed\n", + " firm\n", + " rindless\n", + " pale yellow\n", + " nutty, sweet\n", + " NaN\n", + " True\n", + " False\n", " \n", " \n", "\n", + "

1181 rows × 13 columns

\n", "" ], "text/plain": [ - " cheese milk \\\n", - "12 Ackawi cow, goat, sheep \n", - "116 Baladi cow, goat, sheep \n", - "160 Beemster 2% Milk cow \n", - "212 Blissful Blocks NaN \n", - "213 Blissful Toppings NaN \n", - "243 Bootlegger cow, sheep \n", - "262 Brebis d'Azure sheep \n", - "297 Brunost cow, goat \n", - "300 Bryndza sheep \n", - "311 Burrata water buffalo \n", - "316 Butterkase cow \n", - "367 Cap Cressy goat \n", - "375 Capri Blu goat \n", - "377 Caprice goat \n", - "407 Casu marzu sheep \n", - "437 Cheese Curds NaN \n", - "445 Chhurpi cow, yak \n", - "455 Chura Kampo yak \n", - "508 Cottage Cheese cow \n", - "512 Counting Sheep…and Goats... cow, goat, sheep \n", - "524 Cream Cheesy Bliss NaN \n", - "537 Cressy Blu cow \n", - "569 La Couronne - Fort Aged Comté cow \n", - "601 Lamb Chopper sheep \n", - "621 Le Conquerant Demi Pont L'eveque cow \n", - "646 Limburger cow \n", - "675 Lunetta cow \n", - "701 Mamirolle cow \n", - "776 Monastery Cheeses cow \n", - "789 Monterey Jack cow \n", - "852 Paneer cow, water buffalo \n", - "975 President Fat Free Feta cow \n", - "1001 Purple's a Must cow, goat \n", - "1082 Shanklish cow, sheep \n", - "1099 Shredded Bliss NaN \n", - "1106 Sirene cow, goat, sheep \n", - "1108 Slices Of Bliss NaN \n", - "1123 Sosha goat, yak \n", - "1173 Strawberry Moon cow \n", + " cheese milk country region \\\n", + "0 Aarewasser cow Switzerland \n", + "1 Abbaye de Belloc sheep France Pays Basque \n", + "2 Abbaye de Belval cow France \n", + "3 Abbaye de Citeaux cow France Burgundy \n", + "4 Abbaye de Tamié cow France Savoie \n", + "... ... ... ... ... \n", + "1182 Sveciaost cow Sweden Low-laying regions \n", + "1183 Swag goat Australia South Australia \n", + "1184 Swaledale sheep England Swaledale, North Yorkshire \n", + "1185 Sweet Style Swiss NaN Switzerland \n", + "1186 Swiss cheese cow United States \n", "\n", - " country \\\n", - "12 Cyprus, Egypt, Israel, Jordan, Lebanon, Middle... \n", - "116 Lebanon, Middle East \n", - "160 Canada, Denmark, France, Germany, Netherlands,... \n", - "212 Canada, United States \n", - "213 Canada, United States \n", - "243 Canada, Italy \n", - "262 Canada, Italy \n", - "297 Denmark, Finland, Germany, Iceland, Norway, Sw... \n", - "300 Hungary, Poland, Slovakia \n", - "311 Italy, United States \n", - "316 Austria, Germany \n", - "367 Canada, Italy \n", - "375 Canada, Italy \n", - "377 Canada, Italy \n", - "407 France, Italy \n", - "437 Canada, India, United States \n", - "445 China, Nepal, Tibet \n", - "455 China, Tibet \n", - "508 United Kingdom, United States \n", - "512 Canada, Italy \n", - "524 Canada, United States \n", - "537 Canada, Italy \n", - "569 France, Switzerland \n", - "601 Netherlands, United States \n", - "621 Australia, France \n", - "646 Belgium, Germany, Netherlands \n", - "675 Canada, Italy \n", - "701 Canada, France \n", - "776 Belgium, Canada, France, Switzerland, United S... \n", - "789 Mexico, United States \n", - "852 Bangladesh, India \n", - "975 France, United States \n", - "1001 Canada, Italy \n", - "1082 Egypt, Lebanon, Syria \n", - "1099 Canada, United States \n", - "1106 Albania, Bulgaria, Croatia, Greece, Israel, Ma... \n", - "1108 Canada, United States \n", - "1123 China, Nepal, Tibet \n", - "1173 Canada, Italy \n", + " family type texture \\\n", + "0 NaN semi-soft buttery \n", + "1 NaN semi-hard, artisan creamy, dense, firm \n", + "2 NaN semi-hard elastic \n", + "3 NaN semi-soft, artisan, brined creamy, dense, smooth \n", + "4 NaN soft, artisan creamy, open, smooth \n", + "... ... ... ... \n", + "1182 NaN semi-hard, brined creamy, supple \n", + "1183 NaN fresh firm, artisan creamy, crumbly \n", + "1184 NaN hard semi firm \n", + "1185 NaN semi-hard, artisan firm, supple \n", + "1186 Swiss Cheese hard, artisan, processed firm \n", "\n", - " region family \\\n", - "12 + Feta \n", - "116 NaN \n", - "160 NaN \n", - "212 Cheddar \n", - "213 Parmesan \n", - "243 Lombardy NaN \n", - "262 Lombardy Blue \n", - "297 NaN \n", - "300 NaN \n", - "311 Apulia Mozzarella \n", - "316 NaN \n", - "367 Lombardy NaN \n", - "375 Lombardy Blue \n", - "377 Lombardy NaN \n", - "407 Sardinia (Italy), Southern Corsica (France) NaN \n", - "437 Cheddar \n", - "445 Cottage \n", - "455 Tibet NaN \n", - "508 Cottage \n", - "512 Lombardy NaN \n", - "524 NaN \n", - "537 Lombardy Blue \n", - "569 Franche Comté NaN \n", - "601 California Gouda \n", - "621 NaN \n", - "646 Duchy of Limburg NaN \n", - "675 Lombardy NaN \n", - "701 Plessisville, Quebec NaN \n", - "776 NaN \n", - "789 Monterey, California Monterey Jack \n", - "852 Cottage \n", - "975 New York Feta \n", - "1001 Lombardy Blue \n", - "1082 Feta \n", - "1099 Mozzarella \n", - "1106 Trakia Feta \n", - "1108 Cheddar \n", - "1123 Tibet NaN \n", - "1173 Lombardy NaN \n", + " rind color flavor aroma \\\n", + "0 washed yellow sweet buttery \n", + "1 natural yellow burnt caramel lanoline \n", + "2 washed ivory NaN aromatic \n", + "3 washed white acidic, milky, smooth barnyardy, earthy \n", + "4 washed white fruity, nutty perfumed, pungent \n", + "... ... ... ... ... \n", + "1182 rindless pale yellow acidic NaN \n", + "1183 ash coated white acidic, creamy fresh \n", + "1184 NaN yellow smooth, sweet floral \n", + "1185 waxed NaN nutty nutty, sweet \n", + "1186 rindless pale yellow nutty, sweet NaN \n", "\n", - " type texture \\\n", - "12 soft, brined elastic, smooth, springy \n", - "116 fresh soft, artisan creamy, dense, smooth \n", - "160 semi-soft smooth \n", - "212 hard creamy, crumbly \n", - "213 soft crumbly \n", - "243 hard, artisan crumbly, firm \n", - "262 semi-hard, artisan, blue-veined soft \n", - "297 semi-soft, whey dense \n", - "300 soft, artisan spreadable \n", - "311 fresh soft, artisan creamy, stringy \n", - "316 semi-soft creamy, smooth, spreadable \n", - "367 semi-hard, artisan, smear-ripened compact, dense \n", - "375 soft, blue-veined creamy, soft \n", - "377 soft creamy, smooth \n", - "407 soft, soft-ripened soft-ripened \n", - "437 fresh firm firm, springy \n", - "445 soft, hard, artisan dense \n", - "455 hard, artisan dense, dry, firm \n", - "508 soft, artisan, processed creamy, crumbly \n", - "512 soft, soft-ripened creamy, soft \n", - "524 soft creamy, spreadable \n", - "537 semi-hard, blue-veined creamy, crumbly, firm \n", - "569 semi-hard dense \n", - "601 hard dense, firm, smooth \n", - "621 soft, artisan chalky, creamy, soft \n", - "646 semi-soft, smear-ripened crumbly, firm, smooth \n", - "675 fresh soft, artisan creamy \n", - "701 semi-soft, artisan chewy, supple \n", - "776 soft, semi-soft, brined chalky, creamy, firm, grainy \n", - "789 semi-hard compact, creamy, firm, open, supple \n", - "852 fresh firm crumbly, firm \n", - "975 firm, artisan, brined crumbly \n", - "1001 semi-hard, artisan, blue-veined creamy, crumbly \n", - "1082 fresh firm, hard, artisan creamy, crumbly, firm \n", - "1099 semi-soft elastic, smooth, springy, stringy \n", - "1106 fresh soft, brined crumbly, grainy, smooth \n", - "1108 soft creamy \n", - "1123 soft, artisan creamy \n", - "1173 semi-hard, artisan, smear-ripened compact, creamy, dense \n", + " vegetarian vegan \n", + "0 False False \n", + "1 True False \n", + "2 False False \n", + "3 False False \n", + "4 False False \n", + "... ... ... \n", + "1182 False False \n", + "1183 True False \n", + "1184 True False \n", + "1185 False False \n", + "1186 True False \n", "\n", - " rind color flavor \\\n", - "12 natural white mild, milky, salty \n", - "116 rindless white buttery, mild, salty, sweet \n", - "160 NaN NaN nutty \n", - "212 plastic yellow creamy, savory, sharp, spicy \n", - "213 artificial yellow savory, sharp \n", - "243 natural pale yellow fruity, full-flavored, strong \n", - "262 natural pale yellow sharp \n", - "297 natural brown caramel, sweet \n", - "300 rindless white mild, salty \n", - "311 leaf wrapped white buttery, milky \n", - "316 natural pale yellow buttery, mild \n", - "367 washed pale yellow mellow, savory, sweet \n", - "375 natural pale yellow creamy, subtle, sweet \n", - "377 natural white subtle \n", - "407 natural NaN NaN \n", - "437 natural white mild, milky \n", - "445 natural pale yellow tangy \n", - "455 natural NaN NaN \n", - "508 rindless white sweet \n", - "512 NaN white creamy, subtle, sweet \n", - "524 artificial white creamy, garlicky, herbaceous, sweet \n", - "537 natural pale yellow creamy, savory, sweet \n", - "569 NaN pale yellow caramel, nutty, sweet \n", - "601 waxed ivory buttery, caramel, creamy, nutty, sweet \n", - "621 washed NaN creamy, mild \n", - "646 washed straw grassy, mild, mushroomy \n", - "675 natural white creamy, salty \n", - "701 washed ivory buttery, fruity, salty, sweet \n", - "776 washed golden yellow mild, pungent \n", - "789 NaN pale yellow buttery, mild \n", - "852 rindless white milky \n", - "975 natural white herbaceous, salty, tangy \n", - "1001 mold ripened pale yellow full-flavored, strong \n", - "1082 mold ripened white sharp, spicy, strong \n", - "1099 plastic pale yellow mild, milky \n", - "1106 natural white lemony, salty, sharp, tangy \n", - "1108 plastic yellow creamy, savory, sharp, spicy \n", - "1123 natural white pungent, strong \n", - "1173 washed straw subtle, sweet \n", - "\n", - " aroma vegetarian vegan \n", - "12 mild, milky False False \n", - "116 fresh False False \n", - "160 aromatic, floral, fruity False False \n", - "212 NaN True False \n", - "213 NaN True False \n", - "243 floral NaN NaN \n", - "262 aromatic NaN NaN \n", - "297 NaN NaN NaN \n", - "300 NaN NaN NaN \n", - "311 fresh, milky False False \n", - "316 NaN False False \n", - "367 lactic NaN NaN \n", - "375 goaty NaN NaN \n", - "377 goaty NaN NaN \n", - "407 NaN NaN NaN \n", - "437 fresh NaN NaN \n", - "445 NaN NaN NaN \n", - "455 aromatic NaN NaN \n", - "508 NaN True False \n", - "512 nutty NaN NaN \n", - "524 rich True False \n", - "537 NaN NaN NaN \n", - "569 rich NaN NaN \n", - "601 mild, sweet True False \n", - "621 pungent NaN NaN \n", - "646 stinky False False \n", - "675 aromatic, fresh NaN NaN \n", - "701 earthy, pungent False False \n", - "776 pungent, strong False False \n", - "789 aromatic NaN NaN \n", - "852 fresh, milky True False \n", - "975 fresh NaN NaN \n", - "1001 rich NaN NaN \n", - "1082 pungent, strong False False \n", - "1099 fresh, mild True False \n", - "1106 strong False False \n", - "1108 NaN True False \n", - "1123 pungent, strong NaN NaN \n", - "1173 strong NaN NaN " + "[1181 rows x 13 columns]" ] }, - "execution_count": 51, + "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "print(len(data[data[\"country\"].str.contains(\",\")]))\n", - "data[data[\"country\"].str.contains(\",\")]\n" + "data" ] }, { "cell_type": "code", - "execution_count": 52, - "id": "43058589-f931-46ad-99a7-44be63f962cc", + "execution_count": 9, + "id": "7ef7494b-ff08-40a5-890f-e0f718cf2842", "metadata": {}, "outputs": [], "source": [ - "data=data.drop(index=data[data[\"country\"].str.contains(\",\")].index)" + "data.loc[data.country.str.contains(\"England, Great Britain, United Kingdom\")|data.country.str.contains(\"England, United Kingdom\"),\"country\"]=\"England\"\n", + "data.loc[data.country.str.contains(\"Scotland\"),\"country\"]=\"Scotland\"\n", + "data.loc[data.country.str.contains(\"Great Britain, United Kingdom, Wales\")|data.country.str.contains(\"United Kingdom, Wales\"),\"country\"]=\"Wales\"\n" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "fb044984-c33c-492c-91a2-4e9fff29ceb3", + "metadata": {}, + "outputs": [], + "source": [ + "data=data.drop(index=data[data[\"country\"].str.contains(\",\")].index)\n", + "data=data.drop(index=data[data[\"country\"].str.contains(\" and \")].index)" ] }, { @@ -2171,12 +1499,12 @@ "id": "2f42c973-247a-4f51-947e-fbd76f8f12fc", "metadata": {}, "source": [ - "We removed 39 cheeses because they can come froms several countries. " + "We removed 41 cheeses because they can come froms several countries. " ] }, { "cell_type": "code", - "execution_count": 53, + "execution_count": 13, "id": "59c4e6e7-d624-45a5-a9ea-eb375102b771", "metadata": {}, "outputs": [], @@ -2186,7 +1514,7 @@ }, { "cell_type": "code", - "execution_count": 54, + "execution_count": 14, "id": "0dee0f25-4699-4e46-97d0-21bb36d9c603", "metadata": {}, "outputs": [ @@ -2417,7 +1745,7 @@ " \n", " \n", "\n", - "

1142 rows × 14 columns

\n", + "

1140 rows × 14 columns

\n", "" ], "text/plain": [ @@ -2473,10 +1801,10 @@ "1185 False False , Switzerland \n", "1186 True False , United States \n", "\n", - "[1142 rows x 14 columns]" + "[1140 rows x 14 columns]" ] }, - "execution_count": 54, + "execution_count": 14, "metadata": {}, "output_type": "execute_result" } @@ -2559,7 +1887,7 @@ }, { "cell_type": "code", - "execution_count": 55, + "execution_count": 15, "id": "e2e868d4-33a1-4602-af97-afb1d29e612f", "metadata": {}, "outputs": [ @@ -2589,7 +1917,6 @@ " ', Italy',\n", " ', Mauritania',\n", " ', Mexico',\n", - " ', Mexico and Caribbean',\n", " ', Middle East',\n", " ', Mongolia',\n", " ', Netherlands',\n", @@ -2958,7 +2285,7 @@ " 'Äänekoski, Finland'}" ] }, - "execution_count": 55, + "execution_count": 15, "metadata": {}, "output_type": "execute_result" } @@ -2994,7 +2321,7 @@ }, { "cell_type": "code", - "execution_count": 69, + "execution_count": 16, "id": "0043fe0d-e2d2-48f0-8953-ffc3dee52ba6", "metadata": {}, "outputs": [], @@ -3013,19 +2340,21 @@ }, { "cell_type": "code", - "execution_count": 70, + "execution_count": 17, "id": "710341db-408f-4a4a-a849-65b963582ebc", - "metadata": {}, + "metadata": { + "scrolled": true + }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "b78765c7ef7a4fad8cb4520512a198c8", + "model_id": "07fbeae8f58240ee921eae823a2a69a0", "version_major": 2, "version_minor": 0 }, "text/plain": [ - " 0%| | 0/390 [00:00\n", " \n", " \n", - " 12\n", - " Ackawi\n", - " cow, goat, sheep\n", - " Cyprus, Egypt, Israel, Jordan, Lebanon, Middle...\n", - " +\n", - " Feta\n", - " soft, brined\n", - " elastic, smooth, springy\n", - " natural\n", - " white\n", - " mild, milky, salty\n", - " mild, milky\n", - " False\n", - " False\n", - " \n", - " \n", - " 116\n", - " Baladi\n", - " cow, goat, sheep\n", - " Lebanon, Middle East\n", - " \n", - " NaN\n", - " fresh soft, artisan\n", - " creamy, dense, smooth\n", - " rindless\n", - " white\n", - " buttery, mild, salty, sweet\n", - " fresh\n", - " False\n", - " False\n", - " \n", - " \n", - " 160\n", - " Beemster 2% Milk\n", + " 0\n", + " Aarewasser\n", " cow\n", - " Canada, Denmark, France, Germany, Netherlands,...\n", + " Switzerland\n", " \n", " NaN\n", " semi-soft\n", - " smooth\n", - " NaN\n", - " NaN\n", - " nutty\n", - " aromatic, floral, fruity\n", - " False\n", - " False\n", - " \n", - " \n", - " 212\n", - " Blissful Blocks\n", - " NaN\n", - " Canada, United States\n", - " \n", - " Cheddar\n", - " hard\n", - " creamy, crumbly\n", - " plastic\n", - " yellow\n", - " creamy, savory, sharp, spicy\n", - " NaN\n", - " True\n", - " False\n", - " \n", - " \n", - " 213\n", - " Blissful Toppings\n", - " NaN\n", - " Canada, United States\n", - " \n", - " Parmesan\n", - " soft\n", - " crumbly\n", - " artificial\n", - " yellow\n", - " savory, sharp\n", - " NaN\n", - " True\n", - " False\n", - " \n", - " \n", - " 243\n", - " Bootlegger\n", - " cow, sheep\n", - " Canada, Italy\n", - " Lombardy\n", - " NaN\n", - " hard, artisan\n", - " crumbly, firm\n", - " natural\n", - " pale yellow\n", - " fruity, full-flavored, strong\n", - " floral\n", - " NaN\n", - " NaN\n", - " \n", - " \n", - " 262\n", - " Brebis d'Azure\n", - " sheep\n", - " Canada, Italy\n", - " Lombardy\n", - " Blue\n", - " semi-hard, artisan, blue-veined\n", - " soft\n", - " natural\n", - " pale yellow\n", - " sharp\n", - " aromatic\n", - " NaN\n", - " NaN\n", - " \n", - " \n", - " 297\n", - " Brunost\n", - " cow, goat\n", - " Denmark, Finland, Germany, Iceland, Norway, Sw...\n", - " \n", - " NaN\n", - " semi-soft, whey\n", - " dense\n", - " natural\n", - " brown\n", - " caramel, sweet\n", - " NaN\n", - " NaN\n", - " NaN\n", - " \n", - " \n", - " 300\n", - " Bryndza\n", - " sheep\n", - " Hungary, Poland, Slovakia\n", - " \n", - " NaN\n", - " soft, artisan\n", - " spreadable\n", - " rindless\n", - " white\n", - " mild, salty\n", - " NaN\n", - " NaN\n", - " NaN\n", - " \n", - " \n", - " 311\n", - " Burrata\n", - " water buffalo\n", - " Italy, United States\n", - " Apulia\n", - " Mozzarella\n", - " fresh soft, artisan\n", - " creamy, stringy\n", - " leaf wrapped\n", - " white\n", - " buttery, milky\n", - " fresh, milky\n", - " False\n", - " False\n", - " \n", - " \n", - " 316\n", - " Butterkase\n", - " cow\n", - " Austria, Germany\n", - " \n", - " NaN\n", - " semi-soft\n", - " creamy, smooth, spreadable\n", - " natural\n", - " pale yellow\n", - " buttery, mild\n", - " NaN\n", - " False\n", - " False\n", - " \n", - " \n", - " 367\n", - " Cap Cressy\n", - " goat\n", - " Canada, Italy\n", - " Lombardy\n", - " NaN\n", - " semi-hard, artisan, smear-ripened\n", - " compact, dense\n", + " buttery\n", " washed\n", - " pale yellow\n", - " mellow, savory, sweet\n", - " lactic\n", - " NaN\n", - " NaN\n", - " \n", - " \n", - " 375\n", - " Capri Blu\n", - " goat\n", - " Canada, Italy\n", - " Lombardy\n", - " Blue\n", - " soft, blue-veined\n", - " creamy, soft\n", - " natural\n", - " pale yellow\n", - " creamy, subtle, sweet\n", - " goaty\n", - " NaN\n", - " NaN\n", - " \n", - " \n", - " 377\n", - " Caprice\n", - " goat\n", - " Canada, Italy\n", - " Lombardy\n", - " NaN\n", - " soft\n", - " creamy, smooth\n", - " natural\n", - " white\n", - " subtle\n", - " goaty\n", - " NaN\n", - " NaN\n", - " \n", - " \n", - " 407\n", - " Casu marzu\n", - " sheep\n", - " France, Italy\n", - " Sardinia (Italy), Southern Corsica (France)\n", - " NaN\n", - " soft, soft-ripened\n", - " soft-ripened\n", - " natural\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " \n", - " \n", - " 437\n", - " Cheese Curds\n", - " NaN\n", - " Canada, India, United States\n", - " \n", - " Cheddar\n", - " fresh firm\n", - " firm, springy\n", - " natural\n", - " white\n", - " mild, milky\n", - " fresh\n", - " NaN\n", - " NaN\n", - " \n", - " \n", - " 445\n", - " Chhurpi\n", - " cow, yak\n", - " China, Nepal, Tibet\n", - " \n", - " Cottage\n", - " soft, hard, artisan\n", - " dense\n", - " natural\n", - " pale yellow\n", - " tangy\n", - " NaN\n", - " NaN\n", - " NaN\n", - " \n", - " \n", - " 455\n", - " Chura Kampo\n", - " yak\n", - " China, Tibet\n", - " Tibet\n", - " NaN\n", - " hard, artisan\n", - " dense, dry, firm\n", - " natural\n", - " NaN\n", - " NaN\n", - " aromatic\n", - " NaN\n", - " NaN\n", - " \n", - " \n", - " 508\n", - " Cottage Cheese\n", - " cow\n", - " United Kingdom, United States\n", - " \n", - " Cottage\n", - " soft, artisan, processed\n", - " creamy, crumbly\n", - " rindless\n", - " white\n", + " yellow\n", " sweet\n", - " NaN\n", - " True\n", + " buttery\n", + " False\n", " False\n", " \n", " \n", - " 512\n", - " Counting Sheep…and Goats...\n", - " cow, goat, sheep\n", - " Canada, Italy\n", - " Lombardy\n", - " NaN\n", - " soft, soft-ripened\n", - " creamy, soft\n", - " NaN\n", - " white\n", - " creamy, subtle, sweet\n", - " nutty\n", - " NaN\n", - " NaN\n", - " \n", - " \n", - " 524\n", - " Cream Cheesy Bliss\n", - " NaN\n", - " Canada, United States\n", - " \n", - " NaN\n", - " soft\n", - " creamy, spreadable\n", - " artificial\n", - " white\n", - " creamy, garlicky, herbaceous, sweet\n", - " rich\n", - " True\n", - " False\n", - " \n", - " \n", - " 537\n", - " Cressy Blu\n", - " cow\n", - " Canada, Italy\n", - " Lombardy\n", - " Blue\n", - " semi-hard, blue-veined\n", - " creamy, crumbly, firm\n", - " natural\n", - " pale yellow\n", - " creamy, savory, sweet\n", - " NaN\n", - " NaN\n", - " NaN\n", - " \n", - " \n", - " 569\n", - " La Couronne - Fort Aged Comté\n", - " cow\n", - " France, Switzerland\n", - " Franche Comté\n", - " NaN\n", - " semi-hard\n", - " dense\n", - " NaN\n", - " pale yellow\n", - " caramel, nutty, sweet\n", - " rich\n", - " NaN\n", - " NaN\n", - " \n", - " \n", - " 601\n", - " Lamb Chopper\n", + " 1\n", + " Abbaye de Belloc\n", " sheep\n", - " Netherlands, United States\n", - " California\n", - " Gouda\n", - " hard\n", - " dense, firm, smooth\n", - " waxed\n", - " ivory\n", - " buttery, caramel, creamy, nutty, sweet\n", - " mild, sweet\n", - " True\n", - " False\n", - " \n", - " \n", - " 621\n", - " Le Conquerant Demi Pont L'eveque\n", - " cow\n", - " Australia, France\n", - " \n", + " France\n", + " Pays Basque\n", " NaN\n", - " soft, artisan\n", - " chalky, creamy, soft\n", - " washed\n", - " NaN\n", - " creamy, mild\n", - " pungent\n", - " NaN\n", - " NaN\n", - " \n", - " \n", - " 646\n", - " Limburger\n", - " cow\n", - " Belgium, Germany, Netherlands\n", - " Duchy of Limburg\n", - " NaN\n", - " semi-soft, smear-ripened\n", - " crumbly, firm, smooth\n", - " washed\n", - " straw\n", - " grassy, mild, mushroomy\n", - " stinky\n", - " False\n", - " False\n", - " \n", - " \n", - " 675\n", - " Lunetta\n", - " cow\n", - " Canada, Italy\n", - " Lombardy\n", - " NaN\n", - " fresh soft, artisan\n", - " creamy\n", + " semi-hard, artisan\n", + " creamy, dense, firm\n", " natural\n", - " white\n", - " creamy, salty\n", - " aromatic, fresh\n", - " NaN\n", - " NaN\n", - " \n", - " \n", - " 701\n", - " Mamirolle\n", - " cow\n", - " Canada, France\n", - " Plessisville, Quebec\n", - " NaN\n", - " semi-soft, artisan\n", - " chewy, supple\n", - " washed\n", - " ivory\n", - " buttery, fruity, salty, sweet\n", - " earthy, pungent\n", - " False\n", - " False\n", - " \n", - " \n", - " 776\n", - " Monastery Cheeses\n", - " cow\n", - " Belgium, Canada, France, Switzerland, United S...\n", - " \n", - " NaN\n", - " soft, semi-soft, brined\n", - " chalky, creamy, firm, grainy\n", - " washed\n", - " golden yellow\n", - " mild, pungent\n", - " pungent, strong\n", - " False\n", - " False\n", - " \n", - " \n", - " 789\n", - " Monterey Jack\n", - " cow\n", - " Mexico, United States\n", - " Monterey, California\n", - " Monterey Jack\n", - " semi-hard\n", - " compact, creamy, firm, open, supple\n", - " NaN\n", - " pale yellow\n", - " buttery, mild\n", - " aromatic\n", - " NaN\n", - " NaN\n", - " \n", - " \n", - " 852\n", - " Paneer\n", - " cow, water buffalo\n", - " Bangladesh, India\n", - " \n", - " Cottage\n", - " fresh firm\n", - " crumbly, firm\n", - " rindless\n", - " white\n", - " milky\n", - " fresh, milky\n", - " True\n", - " False\n", - " \n", - " \n", - " 975\n", - " President Fat Free Feta\n", - " cow\n", - " France, United States\n", - " New York\n", - " Feta\n", - " firm, artisan, brined\n", - " crumbly\n", - " natural\n", - " white\n", - " herbaceous, salty, tangy\n", - " fresh\n", - " NaN\n", - " NaN\n", - " \n", - " \n", - " 1001\n", - " Purple's a Must\n", - " cow, goat\n", - " Canada, Italy\n", - " Lombardy\n", - " Blue\n", - " semi-hard, artisan, blue-veined\n", - " creamy, crumbly\n", - " mold ripened\n", - " pale yellow\n", - " full-flavored, strong\n", - " rich\n", - " NaN\n", - " NaN\n", - " \n", - " \n", - " 1082\n", - " Shanklish\n", - " cow, sheep\n", - " Egypt, Lebanon, Syria\n", - " \n", - " Feta\n", - " fresh firm, hard, artisan\n", - " creamy, crumbly, firm\n", - " mold ripened\n", - " white\n", - " sharp, spicy, strong\n", - " pungent, strong\n", - " False\n", - " False\n", - " \n", - " \n", - " 1099\n", - " Shredded Bliss\n", - " NaN\n", - " Canada, United States\n", - " \n", - " Mozzarella\n", - " semi-soft\n", - " elastic, smooth, springy, stringy\n", - " plastic\n", - " pale yellow\n", - " mild, milky\n", - " fresh, mild\n", - " True\n", - " False\n", - " \n", - " \n", - " 1106\n", - " Sirene\n", - " cow, goat, sheep\n", - " Albania, Bulgaria, Croatia, Greece, Israel, Ma...\n", - " Trakia\n", - " Feta\n", - " fresh soft, brined\n", - " crumbly, grainy, smooth\n", - " natural\n", - " white\n", - " lemony, salty, sharp, tangy\n", - " strong\n", - " False\n", - " False\n", - " \n", - " \n", - " 1108\n", - " Slices Of Bliss\n", - " NaN\n", - " Canada, United States\n", - " \n", - " Cheddar\n", - " soft\n", - " creamy\n", - " plastic\n", " yellow\n", - " creamy, savory, sharp, spicy\n", - " NaN\n", + " burnt caramel\n", + " lanoline\n", " True\n", " False\n", " \n", " \n", - " 1123\n", - " Sosha\n", - " goat, yak\n", - " China, Nepal, Tibet\n", - " Tibet\n", - " NaN\n", - " soft, artisan\n", - " creamy\n", - " natural\n", - " white\n", - " pungent, strong\n", - " pungent, strong\n", + " 2\n", + " Abbaye de Belval\n", + " cow\n", + " France\n", + " \n", " NaN\n", + " semi-hard\n", + " elastic\n", + " washed\n", + " ivory\n", " NaN\n", + " aromatic\n", + " False\n", + " False\n", " \n", " \n", - " 1173\n", - " Strawberry Moon\n", + " 3\n", + " Abbaye de Citeaux\n", " cow\n", - " Canada, Italy\n", - " Lombardy\n", + " France\n", + " Burgundy\n", " NaN\n", - " semi-hard, artisan, smear-ripened\n", - " compact, creamy, dense\n", + " semi-soft, artisan, brined\n", + " creamy, dense, smooth\n", " washed\n", - " straw\n", - " subtle, sweet\n", - " strong\n", + " white\n", + " acidic, milky, smooth\n", + " barnyardy, earthy\n", + " False\n", + " False\n", + " \n", + " \n", + " 4\n", + " Abbaye de Tamié\n", + " cow\n", + " France\n", + " Savoie\n", " NaN\n", + " soft, artisan\n", + " creamy, open, smooth\n", + " washed\n", + " white\n", + " fruity, nutty\n", + " perfumed, pungent\n", + " False\n", + " False\n", + " \n", + " \n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " \n", + " \n", + " 1182\n", + " Sveciaost\n", + " cow\n", + " Sweden\n", + " Low-laying regions\n", " NaN\n", + " semi-hard, brined\n", + " creamy, supple\n", + " rindless\n", + " pale yellow\n", + " acidic\n", + " NaN\n", + " False\n", + " False\n", + " \n", + " \n", + " 1183\n", + " Swag\n", + " goat\n", + " Australia\n", + " South Australia\n", + " NaN\n", + " fresh firm, artisan\n", + " creamy, crumbly\n", + " ash coated\n", + " white\n", + " acidic, creamy\n", + " fresh\n", + " True\n", + " False\n", + " \n", + " \n", + " 1184\n", + " Swaledale\n", + " sheep\n", + " England\n", + " Swaledale, North Yorkshire\n", + " NaN\n", + " hard\n", + " semi firm\n", + " NaN\n", + " yellow\n", + " smooth, sweet\n", + " floral\n", + " True\n", + " False\n", + " \n", + " \n", + " 1185\n", + " Sweet Style Swiss\n", + " NaN\n", + " Switzerland\n", + " \n", + " NaN\n", + " semi-hard, artisan\n", + " firm, supple\n", + " waxed\n", + " NaN\n", + " nutty\n", + " nutty, sweet\n", + " False\n", + " False\n", + " \n", + " \n", + " 1186\n", + " Swiss cheese\n", + " cow\n", + " United States\n", + " \n", + " Swiss Cheese\n", + " hard, artisan, processed\n", + " firm\n", + " rindless\n", + " pale yellow\n", + " nutty, sweet\n", + " NaN\n", + " True\n", + " False\n", " \n", " \n", "\n", + "

1181 rows × 13 columns

\n", "" ], "text/plain": [ - " cheese milk \\\n", - "12 Ackawi cow, goat, sheep \n", - "116 Baladi cow, goat, sheep \n", - "160 Beemster 2% Milk cow \n", - "212 Blissful Blocks NaN \n", - "213 Blissful Toppings NaN \n", - "243 Bootlegger cow, sheep \n", - "262 Brebis d'Azure sheep \n", - "297 Brunost cow, goat \n", - "300 Bryndza sheep \n", - "311 Burrata water buffalo \n", - "316 Butterkase cow \n", - "367 Cap Cressy goat \n", - "375 Capri Blu goat \n", - "377 Caprice goat \n", - "407 Casu marzu sheep \n", - "437 Cheese Curds NaN \n", - "445 Chhurpi cow, yak \n", - "455 Chura Kampo yak \n", - "508 Cottage Cheese cow \n", - "512 Counting Sheep…and Goats... cow, goat, sheep \n", - "524 Cream Cheesy Bliss NaN \n", - "537 Cressy Blu cow \n", - "569 La Couronne - Fort Aged Comté cow \n", - "601 Lamb Chopper sheep \n", - "621 Le Conquerant Demi Pont L'eveque cow \n", - "646 Limburger cow \n", - "675 Lunetta cow \n", - "701 Mamirolle cow \n", - "776 Monastery Cheeses cow \n", - "789 Monterey Jack cow \n", - "852 Paneer cow, water buffalo \n", - "975 President Fat Free Feta cow \n", - "1001 Purple's a Must cow, goat \n", - "1082 Shanklish cow, sheep \n", - "1099 Shredded Bliss NaN \n", - "1106 Sirene cow, goat, sheep \n", - "1108 Slices Of Bliss NaN \n", - "1123 Sosha goat, yak \n", - "1173 Strawberry Moon cow \n", + " cheese milk country region \\\n", + "0 Aarewasser cow Switzerland \n", + "1 Abbaye de Belloc sheep France Pays Basque \n", + "2 Abbaye de Belval cow France \n", + "3 Abbaye de Citeaux cow France Burgundy \n", + "4 Abbaye de Tamié cow France Savoie \n", + "... ... ... ... ... \n", + "1182 Sveciaost cow Sweden Low-laying regions \n", + "1183 Swag goat Australia South Australia \n", + "1184 Swaledale sheep England Swaledale, North Yorkshire \n", + "1185 Sweet Style Swiss NaN Switzerland \n", + "1186 Swiss cheese cow United States \n", "\n", - " country \\\n", - "12 Cyprus, Egypt, Israel, Jordan, Lebanon, Middle... \n", - "116 Lebanon, Middle East \n", - "160 Canada, Denmark, France, Germany, Netherlands,... \n", - "212 Canada, United States \n", - "213 Canada, United States \n", - "243 Canada, Italy \n", - "262 Canada, Italy \n", - "297 Denmark, Finland, Germany, Iceland, Norway, Sw... \n", - "300 Hungary, Poland, Slovakia \n", - "311 Italy, United States \n", - "316 Austria, Germany \n", - "367 Canada, Italy \n", - "375 Canada, Italy \n", - "377 Canada, Italy \n", - "407 France, Italy \n", - "437 Canada, India, United States \n", - "445 China, Nepal, Tibet \n", - "455 China, Tibet \n", - "508 United Kingdom, United States \n", - "512 Canada, Italy \n", - "524 Canada, United States \n", - "537 Canada, Italy \n", - "569 France, Switzerland \n", - "601 Netherlands, United States \n", - "621 Australia, France \n", - "646 Belgium, Germany, Netherlands \n", - "675 Canada, Italy \n", - "701 Canada, France \n", - "776 Belgium, Canada, France, Switzerland, United S... \n", - "789 Mexico, United States \n", - "852 Bangladesh, India \n", - "975 France, United States \n", - "1001 Canada, Italy \n", - "1082 Egypt, Lebanon, Syria \n", - "1099 Canada, United States \n", - "1106 Albania, Bulgaria, Croatia, Greece, Israel, Ma... \n", - "1108 Canada, United States \n", - "1123 China, Nepal, Tibet \n", - "1173 Canada, Italy \n", + " family type texture \\\n", + "0 NaN semi-soft buttery \n", + "1 NaN semi-hard, artisan creamy, dense, firm \n", + "2 NaN semi-hard elastic \n", + "3 NaN semi-soft, artisan, brined creamy, dense, smooth \n", + "4 NaN soft, artisan creamy, open, smooth \n", + "... ... ... ... \n", + "1182 NaN semi-hard, brined creamy, supple \n", + "1183 NaN fresh firm, artisan creamy, crumbly \n", + "1184 NaN hard semi firm \n", + "1185 NaN semi-hard, artisan firm, supple \n", + "1186 Swiss Cheese hard, artisan, processed firm \n", "\n", - " region family \\\n", - "12 + Feta \n", - "116 NaN \n", - "160 NaN \n", - "212 Cheddar \n", - "213 Parmesan \n", - "243 Lombardy NaN \n", - "262 Lombardy Blue \n", - "297 NaN \n", - "300 NaN \n", - "311 Apulia Mozzarella \n", - "316 NaN \n", - "367 Lombardy NaN \n", - "375 Lombardy Blue \n", - "377 Lombardy NaN \n", - "407 Sardinia (Italy), Southern Corsica (France) NaN \n", - "437 Cheddar \n", - "445 Cottage \n", - "455 Tibet NaN \n", - "508 Cottage \n", - "512 Lombardy NaN \n", - "524 NaN \n", - "537 Lombardy Blue \n", - "569 Franche Comté NaN \n", - "601 California Gouda \n", - "621 NaN \n", - "646 Duchy of Limburg NaN \n", - "675 Lombardy NaN \n", - "701 Plessisville, Quebec NaN \n", - "776 NaN \n", - "789 Monterey, California Monterey Jack \n", - "852 Cottage \n", - "975 New York Feta \n", - "1001 Lombardy Blue \n", - "1082 Feta \n", - "1099 Mozzarella \n", - "1106 Trakia Feta \n", - "1108 Cheddar \n", - "1123 Tibet NaN \n", - "1173 Lombardy NaN \n", + " rind color flavor aroma \\\n", + "0 washed yellow sweet buttery \n", + "1 natural yellow burnt caramel lanoline \n", + "2 washed ivory NaN aromatic \n", + "3 washed white acidic, milky, smooth barnyardy, earthy \n", + "4 washed white fruity, nutty perfumed, pungent \n", + "... ... ... ... ... \n", + "1182 rindless pale yellow acidic NaN \n", + "1183 ash coated white acidic, creamy fresh \n", + "1184 NaN yellow smooth, sweet floral \n", + "1185 waxed NaN nutty nutty, sweet \n", + "1186 rindless pale yellow nutty, sweet NaN \n", "\n", - " type texture \\\n", - "12 soft, brined elastic, smooth, springy \n", - "116 fresh soft, artisan creamy, dense, smooth \n", - "160 semi-soft smooth \n", - "212 hard creamy, crumbly \n", - "213 soft crumbly \n", - "243 hard, artisan crumbly, firm \n", - "262 semi-hard, artisan, blue-veined soft \n", - "297 semi-soft, whey dense \n", - "300 soft, artisan spreadable \n", - "311 fresh soft, artisan creamy, stringy \n", - "316 semi-soft creamy, smooth, spreadable \n", - "367 semi-hard, artisan, smear-ripened compact, dense \n", - "375 soft, blue-veined creamy, soft \n", - "377 soft creamy, smooth \n", - "407 soft, soft-ripened soft-ripened \n", - "437 fresh firm firm, springy \n", - "445 soft, hard, artisan dense \n", - "455 hard, artisan dense, dry, firm \n", - "508 soft, artisan, processed creamy, crumbly \n", - "512 soft, soft-ripened creamy, soft \n", - "524 soft creamy, spreadable \n", - "537 semi-hard, blue-veined creamy, crumbly, firm \n", - "569 semi-hard dense \n", - "601 hard dense, firm, smooth \n", - "621 soft, artisan chalky, creamy, soft \n", - "646 semi-soft, smear-ripened crumbly, firm, smooth \n", - "675 fresh soft, artisan creamy \n", - "701 semi-soft, artisan chewy, supple \n", - "776 soft, semi-soft, brined chalky, creamy, firm, grainy \n", - "789 semi-hard compact, creamy, firm, open, supple \n", - "852 fresh firm crumbly, firm \n", - "975 firm, artisan, brined crumbly \n", - "1001 semi-hard, artisan, blue-veined creamy, crumbly \n", - "1082 fresh firm, hard, artisan creamy, crumbly, firm \n", - "1099 semi-soft elastic, smooth, springy, stringy \n", - "1106 fresh soft, brined crumbly, grainy, smooth \n", - "1108 soft creamy \n", - "1123 soft, artisan creamy \n", - "1173 semi-hard, artisan, smear-ripened compact, creamy, dense \n", + " vegetarian vegan \n", + "0 False False \n", + "1 True False \n", + "2 False False \n", + "3 False False \n", + "4 False False \n", + "... ... ... \n", + "1182 False False \n", + "1183 True False \n", + "1184 True False \n", + "1185 False False \n", + "1186 True False \n", "\n", - " rind color flavor \\\n", - "12 natural white mild, milky, salty \n", - "116 rindless white buttery, mild, salty, sweet \n", - "160 NaN NaN nutty \n", - "212 plastic yellow creamy, savory, sharp, spicy \n", - "213 artificial yellow savory, sharp \n", - "243 natural pale yellow fruity, full-flavored, strong \n", - "262 natural pale yellow sharp \n", - "297 natural brown caramel, sweet \n", - "300 rindless white mild, salty \n", - "311 leaf wrapped white buttery, milky \n", - "316 natural pale yellow buttery, mild \n", - "367 washed pale yellow mellow, savory, sweet \n", - "375 natural pale yellow creamy, subtle, sweet \n", - "377 natural white subtle \n", - "407 natural NaN NaN \n", - "437 natural white mild, milky \n", - "445 natural pale yellow tangy \n", - "455 natural NaN NaN \n", - "508 rindless white sweet \n", - "512 NaN white creamy, subtle, sweet \n", - "524 artificial white creamy, garlicky, herbaceous, sweet \n", - "537 natural pale yellow creamy, savory, sweet \n", - "569 NaN pale yellow caramel, nutty, sweet \n", - "601 waxed ivory buttery, caramel, creamy, nutty, sweet \n", - "621 washed NaN creamy, mild \n", - "646 washed straw grassy, mild, mushroomy \n", - "675 natural white creamy, salty \n", - "701 washed ivory buttery, fruity, salty, sweet \n", - "776 washed golden yellow mild, pungent \n", - "789 NaN pale yellow buttery, mild \n", - "852 rindless white milky \n", - "975 natural white herbaceous, salty, tangy \n", - "1001 mold ripened pale yellow full-flavored, strong \n", - "1082 mold ripened white sharp, spicy, strong \n", - "1099 plastic pale yellow mild, milky \n", - "1106 natural white lemony, salty, sharp, tangy \n", - "1108 plastic yellow creamy, savory, sharp, spicy \n", - "1123 natural white pungent, strong \n", - "1173 washed straw subtle, sweet \n", - "\n", - " aroma vegetarian vegan \n", - "12 mild, milky False False \n", - "116 fresh False False \n", - "160 aromatic, floral, fruity False False \n", - "212 NaN True False \n", - "213 NaN True False \n", - "243 floral NaN NaN \n", - "262 aromatic NaN NaN \n", - "297 NaN NaN NaN \n", - "300 NaN NaN NaN \n", - "311 fresh, milky False False \n", - "316 NaN False False \n", - "367 lactic NaN NaN \n", - "375 goaty NaN NaN \n", - "377 goaty NaN NaN \n", - "407 NaN NaN NaN \n", - "437 fresh NaN NaN \n", - "445 NaN NaN NaN \n", - "455 aromatic NaN NaN \n", - "508 NaN True False \n", - "512 nutty NaN NaN \n", - "524 rich True False \n", - "537 NaN NaN NaN \n", - "569 rich NaN NaN \n", - "601 mild, sweet True False \n", - "621 pungent NaN NaN \n", - "646 stinky False False \n", - "675 aromatic, fresh NaN NaN \n", - "701 earthy, pungent False False \n", - "776 pungent, strong False False \n", - "789 aromatic NaN NaN \n", - "852 fresh, milky True False \n", - "975 fresh NaN NaN \n", - "1001 rich NaN NaN \n", - "1082 pungent, strong False False \n", - "1099 fresh, mild True False \n", - "1106 strong False False \n", - "1108 NaN True False \n", - "1123 pungent, strong NaN NaN \n", - "1173 strong NaN NaN " + "[1181 rows x 13 columns]" ] }, - "execution_count": 51, + "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "print(len(data[data[\"country\"].str.contains(\",\")]))\n", - "data[data[\"country\"].str.contains(\",\")]\n" + "data" ] }, { "cell_type": "code", - "execution_count": 52, - "id": "43058589-f931-46ad-99a7-44be63f962cc", + "execution_count": 9, + "id": "7ef7494b-ff08-40a5-890f-e0f718cf2842", "metadata": {}, "outputs": [], "source": [ - "data=data.drop(index=data[data[\"country\"].str.contains(\",\")].index)" + "data.loc[data.country.str.contains(\"England, Great Britain, United Kingdom\")|data.country.str.contains(\"England, United Kingdom\"),\"country\"]=\"England\"\n", + "data.loc[data.country.str.contains(\"Scotland\"),\"country\"]=\"Scotland\"\n", + "data.loc[data.country.str.contains(\"Great Britain, United Kingdom, Wales\")|data.country.str.contains(\"United Kingdom, Wales\"),\"country\"]=\"Wales\"\n" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "fb044984-c33c-492c-91a2-4e9fff29ceb3", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
indexcheesemilkcountryregionfamilytypetexturerindcolorflavoraromavegetarianvegan
00AarewassercowSwitzerlandNaNsemi-softbutterywashedyellowsweetbutteryFalseFalse
11Abbaye de BellocsheepFrancePays BasqueNaNsemi-hard, artisancreamy, dense, firmnaturalyellowburnt caramellanolineTrueFalse
22Abbaye de BelvalcowFranceNaNsemi-hardelasticwashedivoryNaNaromaticFalseFalse
33Abbaye de CiteauxcowFranceBurgundyNaNsemi-soft, artisan, brinedcreamy, dense, smoothwashedwhiteacidic, milky, smoothbarnyardy, earthyFalseFalse
44Abbaye de TamiécowFranceSavoieNaNsoft, artisancreamy, open, smoothwashedwhitefruity, nuttyperfumed, pungentFalseFalse
.............................................
11351182SveciaostcowSwedenLow-laying regionsNaNsemi-hard, brinedcreamy, supplerindlesspale yellowacidicNaNFalseFalse
11361183SwaggoatAustraliaSouth AustraliaNaNfresh firm, artisancreamy, crumblyash coatedwhiteacidic, creamyfreshTrueFalse
11371184SwaledalesheepEnglandSwaledale, North YorkshireNaNhardsemi firmNaNyellowsmooth, sweetfloralTrueFalse
11381185Sweet Style SwissNaNSwitzerlandNaNsemi-hard, artisanfirm, supplewaxedNaNnuttynutty, sweetFalseFalse
11391186Swiss cheesecowUnited StatesSwiss Cheesehard, artisan, processedfirmrindlesspale yellownutty, sweetNaNTrueFalse
\n", + "

1140 rows × 14 columns

\n", + "
" + ], + "text/plain": [ + " index cheese milk country \\\n", + "0 0 Aarewasser cow Switzerland \n", + "1 1 Abbaye de Belloc sheep France \n", + "2 2 Abbaye de Belval cow France \n", + "3 3 Abbaye de Citeaux cow France \n", + "4 4 Abbaye de Tamié cow France \n", + "... ... ... ... ... \n", + "1135 1182 Sveciaost cow Sweden \n", + "1136 1183 Swag goat Australia \n", + "1137 1184 Swaledale sheep England \n", + "1138 1185 Sweet Style Swiss NaN Switzerland \n", + "1139 1186 Swiss cheese cow United States \n", + "\n", + " region family type \\\n", + "0 NaN semi-soft \n", + "1 Pays Basque NaN semi-hard, artisan \n", + "2 NaN semi-hard \n", + "3 Burgundy NaN semi-soft, artisan, brined \n", + "4 Savoie NaN soft, artisan \n", + "... ... ... ... \n", + "1135 Low-laying regions NaN semi-hard, brined \n", + "1136 South Australia NaN fresh firm, artisan \n", + "1137 Swaledale, North Yorkshire NaN hard \n", + "1138 NaN semi-hard, artisan \n", + "1139 Swiss Cheese hard, artisan, processed \n", + "\n", + " texture rind color flavor \\\n", + "0 buttery washed yellow sweet \n", + "1 creamy, dense, firm natural yellow burnt caramel \n", + "2 elastic washed ivory NaN \n", + "3 creamy, dense, smooth washed white acidic, milky, smooth \n", + "4 creamy, open, smooth washed white fruity, nutty \n", + "... ... ... ... ... \n", + "1135 creamy, supple rindless pale yellow acidic \n", + "1136 creamy, crumbly ash coated white acidic, creamy \n", + "1137 semi firm NaN yellow smooth, sweet \n", + "1138 firm, supple waxed NaN nutty \n", + "1139 firm rindless pale yellow nutty, sweet \n", + "\n", + " aroma vegetarian vegan \n", + "0 buttery False False \n", + "1 lanoline True False \n", + "2 aromatic False False \n", + "3 barnyardy, earthy False False \n", + "4 perfumed, pungent False False \n", + "... ... ... ... \n", + "1135 NaN False False \n", + "1136 fresh True False \n", + "1137 floral True False \n", + "1138 nutty, sweet False False \n", + "1139 NaN True False \n", + "\n", + "[1140 rows x 14 columns]" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data=data.drop(index=data[data[\"country\"].str.contains(\",\")].index)\n", + "data=data.drop(index=data[data[\"country\"].str.contains(\" and \")].index)\n", + "data.reset_index()" ] }, { @@ -2171,12 +1794,12 @@ "id": "2f42c973-247a-4f51-947e-fbd76f8f12fc", "metadata": {}, "source": [ - "We removed 39 cheeses because they can come froms several countries. " + "We removed 41 cheeses because they can come froms several countries. " ] }, { "cell_type": "code", - "execution_count": 53, + "execution_count": 11, "id": "59c4e6e7-d624-45a5-a9ea-eb375102b771", "metadata": {}, "outputs": [], @@ -2186,7 +1809,7 @@ }, { "cell_type": "code", - "execution_count": 54, + "execution_count": 12, "id": "0dee0f25-4699-4e46-97d0-21bb36d9c603", "metadata": {}, "outputs": [ @@ -2417,7 +2040,7 @@ " \n", " \n", "\n", - "

1142 rows × 14 columns

\n", + "

1140 rows × 14 columns

\n", "" ], "text/plain": [ @@ -2473,10 +2096,10 @@ "1185 False False , Switzerland \n", "1186 True False , United States \n", "\n", - "[1142 rows x 14 columns]" + "[1140 rows x 14 columns]" ] }, - "execution_count": 54, + "execution_count": 12, "metadata": {}, "output_type": "execute_result" } @@ -2487,517 +2110,22 @@ }, { "cell_type": "code", - "execution_count": null, - "id": "2ef7351c-f117-403b-bc6e-f9f30a98c9d2", - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "353724eb-8d64-4b64-84c6-f06be36acd8b", - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "54d56bd4-c83a-4e8c-8751-b4b2f7830a9e", - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "bd68f1bb-c9f6-4c57-951b-8ac1f3192f09", - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "eeff487e-9b66-4c4b-b4f6-dc5352fb2144", - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "cdb0d04c-e0f2-4553-8906-e9282f4942d2", - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "a551e0f4-3f99-4dae-9b31-6205b772ebf5", - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "7c02cc29-fe07-4ff9-8c6b-8638d37830cd", - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "de579631-a29c-4620-9bbf-7085b83d16b7", - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": 55, + "execution_count": 13, "id": "e2e868d4-33a1-4602-af97-afb1d29e612f", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "{', Afghanistan',\n", - " ', Argentina',\n", - " ', Armenia',\n", - " ', Australia',\n", - " ', Austria',\n", - " ', Belgium',\n", - " ', Brazil',\n", - " ', Canada',\n", - " ', Cyprus',\n", - " ', Denmark',\n", - " ', England',\n", - " ', France',\n", - " ', Germany',\n", - " ', Greece',\n", - " ', Holland',\n", - " ', Hungary',\n", - " ', Iceland',\n", - " ', Iraq',\n", - " ', Ireland',\n", - " ', Israel',\n", - " ', Italy',\n", - " ', Mauritania',\n", - " ', Mexico',\n", - " ', Mexico and Caribbean',\n", - " ', Middle East',\n", - " ', Mongolia',\n", - " ', Netherlands',\n", - " ', New Zealand',\n", - " ', Poland',\n", - " ', Portugal',\n", - " ', Scotland',\n", - " ', Serbia',\n", - " ', Spain',\n", - " ', Sweden',\n", - " ', Switzerland',\n", - " ', Turkey',\n", - " ', United Kingdom',\n", - " ', United States',\n", - " ', Wales',\n", - " 'Aberdeenshire, Scotland',\n", - " 'Aconcagua, Chile',\n", - " 'Adamstown, Co Wexford, Ireland',\n", - " 'Airedale farming district, New Zealand',\n", - " 'Alba, Italy',\n", - " 'All Holland, Netherlands',\n", - " 'Allagau, Bavarian Alps, Germany',\n", - " 'Allgaeu Alps, Germany',\n", - " 'Allgau, Germany',\n", - " 'Allgäu, Germany',\n", - " 'Amou, Gascony, France',\n", - " 'Anjou, France',\n", - " 'Ann Arbor, MI, United States',\n", - " 'Ann Arbor, Michigan, United States',\n", - " 'Aquitaine, France',\n", - " 'Asiago, Italy',\n", - " 'Asturias, Spain',\n", - " 'Auvergne, France',\n", - " 'Auvergne, Salers, France',\n", - " 'Averyon, France',\n", - " 'Avesnes, France',\n", - " 'Aveyron, France',\n", - " 'Aveyron, Laguiole, France',\n", - " 'Avila, Spain',\n", - " 'Azores, Portugal',\n", - " 'Ballarat, Victoria, Australia',\n", - " 'Banks Peninsular in Canterbury, New Zealand',\n", - " 'Banon, France',\n", - " 'Barcelona, Spain',\n", - " 'Bas-Languedoc, Comtat Venaissin, France',\n", - " 'Basilicata, Italy',\n", - " 'Basque, Pyrenees Mountains, France',\n", - " 'Bavaria, Germany',\n", - " 'Beara Peninsula, Co. Cork, Ireland',\n", - " 'Beira Baixa Province, Portugal',\n", - " 'Belvederis, Lithuania',\n", - " 'Bergues, France',\n", - " 'Bermondsey, London, England',\n", - " 'Berry, France',\n", - " 'Bethania, United Kingdom',\n", - " 'Bjurholm, Sweden',\n", - " 'Blarney, Ireland',\n", - " 'Bloomdale, United States',\n", - " 'Bornholm, Denmark',\n", - " 'Bourgogne, France',\n", - " 'Bregenzerwald, Kleinwalsertal, Großwalsertal, Laiblachtal (Pfänderstock) and Rheintal, Austria',\n", - " 'Brickhill, Co. Clare, Ireland',\n", - " 'Brisbane, Australia',\n", - " 'British Columbia, Canada',\n", - " 'Brittany, France',\n", - " 'Brooklyn NY, United States',\n", - " 'Burgund, France',\n", - " 'Burgundy, France',\n", - " 'Bursa, Turkey',\n", - " 'Buxton, Derbyshire, England',\n", - " 'Béarnaise in Pyrénées-Atlantique, France',\n", - " 'Calabria, Italy',\n", - " 'California, United States',\n", - " 'Campania, Italy',\n", - " 'Campania, Paestum, Foggia, Italy',\n", - " 'Canary Islands, Spain',\n", - " 'Canton of Glarus, Switzerland',\n", - " 'Carmarthenshire, Wales',\n", - " 'Carneros, Sonoma, California, United States',\n", - " 'Carnia, Italy',\n", - " 'Carrigtwohill, ',\n", - " 'Carrigtwohill, Ireland',\n", - " 'Castelo Branco, Fundão and Idanha-a-Nova, Portugal',\n", - " 'Castile-Leon, Spain',\n", - " 'Castilla Leon, Spain',\n", - " 'Castille-Leon, Spain',\n", - " 'Central Balkan Mountains, Bulgaria',\n", - " 'Central and Western Macedonia, Thessalia, Greece',\n", - " 'Central and Western Macedonia, Thessaly, Greece',\n", - " 'Centre , the department of Loiret, France',\n", - " 'Centre-Val de Loire, France',\n", - " 'Ceredigion, United Kingdom',\n", - " 'Cevenes, France',\n", - " 'Charentes, France',\n", - " 'Charentes-Poitou, France',\n", - " 'Charm, Ohio, United States',\n", - " 'Chelmarsh, Bridgnorth, Shropshire, England',\n", - " 'Cheshire, England',\n", - " 'Chirac, France',\n", - " 'Co Clare, Ireland',\n", - " 'Co Limerick, Ireland',\n", - " 'Co. Carlow, Ireland',\n", - " 'Co. Cork, Ireland',\n", - " 'Co. Mayo, Ireland',\n", - " 'Co. Offaly, Ireland',\n", - " 'Coast of Oregon, United States',\n", - " 'Colby, Wisconsin, United States',\n", - " 'Colorado, United States',\n", - " 'Comox Valley, Vancouver Island, Canada',\n", - " 'Coquet, England',\n", - " 'Cornwall, ',\n", - " 'Cornwall, England',\n", - " 'Corsica, France',\n", - " 'Cotherstone, England',\n", - " 'Cotswolds, England',\n", - " 'County Antrim, Ireland',\n", - " 'County Carlow, Ireland',\n", - " 'County Cavan, Ireland',\n", - " 'County Tipperary, Clogheen, Ireland',\n", - " 'County Wexford, Ireland',\n", - " 'Croisy-sur-Eure, France',\n", - " 'Crotone, Italy',\n", - " 'Cumbrian, United Kingdom',\n", - " 'Dalmatia, Croatia',\n", - " 'Derbyshire, Leicestershire, Nottinghamshire, England',\n", - " 'Devon, England',\n", - " 'Dorset, England',\n", - " 'Duhallow, Ireland',\n", - " 'Dumfries, Scotland',\n", - " 'Dumfriesshire, Scotland',\n", - " 'East Midlands, England',\n", - " 'East Sussex, United Kingdom',\n", - " 'Emilia Romagna, Italy',\n", - " 'Emilia-Romagna, Italy',\n", - " 'Extremadura, Spain',\n", - " 'Fairview, United States',\n", - " 'Fethard, Co Tipperary, Ireland',\n", - " 'Fife, Scotland',\n", - " 'Flanders, Belgium',\n", - " 'Fornells de la Selva, Gironès, Spain',\n", - " 'Franche Comté, France',\n", - " 'French Basque Country, Midi-Pyrénées, France',\n", - " 'Friuli Venezia Giulia and Veneto, Italy',\n", - " 'Friuli-Venezia Giulia and the Veneto, Italy',\n", - " 'Friuli-Venezia Giulia, Italy',\n", - " 'Galax, Virginia, United States',\n", - " 'Galicia, Spain',\n", - " 'Georgia, United States',\n", - " 'Gevrey-Chambertin, Burgundy, France',\n", - " 'Gippsland, Victoria, Australia',\n", - " 'Gloucestershire County, England',\n", - " 'Gloucestershire, England',\n", - " 'Gravina in Puglia, Murgia, Italy',\n", - " 'Greensboro, VT, United States',\n", - " 'Greenville, Indiana, United States',\n", - " 'Gujarat, India',\n", - " 'Gâtinais, France',\n", - " 'Hamilton, New Zealand',\n", - " 'Haute Vienne, France',\n", - " 'Haute-Savoie / Upper Savoy, France',\n", - " 'Herault, France',\n", - " 'Herefordshire, West Midlands, United Kingdom',\n", - " 'Het Groene Hart, Netherlands',\n", - " 'Huizen, Netherlands',\n", - " 'Hunter Valley, Australia',\n", - " 'Ile de France, France',\n", - " 'Ile-de-France/Champagne, France',\n", - " 'Illinois, United States',\n", - " 'Illoud (Haute-Marne), France',\n", - " 'Inagh, Co Clare, ',\n", - " 'Inagh, Co Clare, Ireland',\n", - " 'Indiana, United States',\n", - " 'Iowa, United States',\n", - " 'Isere, France',\n", - " 'Island of Pag, Croatia',\n", - " 'Jura, Switzerland',\n", - " 'Karlovy Vary, Czech Republic',\n", - " 'Kent, United Kingdom',\n", - " 'Kilmallock County Limerick, Ireland',\n", - " 'Kimball, United States',\n", - " 'Kinfauns, Perthshire, Scotland',\n", - " 'La Velle, Wisconsin, United States',\n", - " 'Lanarkshire, Scotland',\n", - " 'Landford, England',\n", - " 'Landshut, Germany',\n", - " 'Languedoc, France',\n", - " 'Languedoc-Roussillon, France',\n", - " 'Lapland, Finland',\n", - " 'Laqueuille, France',\n", - " 'Laruns, France',\n", - " 'Larzac, France',\n", - " 'Lazio, Sardinia, Italy',\n", - " 'Lebanon, CT, United States',\n", - " 'Leiden, Netherlands',\n", - " 'Lincolnshire, England',\n", - " 'Lodi, Italy',\n", - " 'Loire Valley, France',\n", - " 'Loire, France',\n", - " 'Lombardy, Italy',\n", - " 'Low-laying regions, Sweden',\n", - " 'Lower Normandy, France',\n", - " \"Lucerne, Schwyz, Unterwald, and Zoug, and the following additional places: Muri district in d'Argovi, Switzerland\",\n", - " 'Macedonia, Thrace, Thessalia, Peloponissos, Ionian Islands, Aegean islands, Crete Island and Epirus, Greece',\n", - " 'Maine, United States',\n", - " 'Manitoba, Canada',\n", - " 'Mankato, MN, United States',\n", - " 'Marathon, NY, United States',\n", - " 'Maribo, Denmark',\n", - " 'Massachusetts, United States',\n", - " 'Menorca, Balearic Islands, Spain',\n", - " 'Midi-Pyrenees, France',\n", - " 'Midi-Pyrénées, France',\n", - " 'Milford, NJ, United States',\n", - " 'Minas Gerais, Brazil',\n", - " 'Minnesota, United States',\n", - " 'Missouri, United States',\n", - " 'Modena, Italy',\n", - " 'Moliterno, Italy',\n", - " 'Mols, Denmark',\n", - " 'Monterey, California, United States',\n", - " 'Mornington Peninsula, Melbourne, Australia',\n", - " 'Murazzano, Italy',\n", - " 'Murcia, Spain',\n", - " 'NY, United States',\n", - " 'Naples, Italy',\n", - " 'New Hampshire, United States',\n", - " 'New Jersey, United States',\n", - " 'New South Wales, Australia',\n", - " 'New York, France',\n", - " 'New York, United States',\n", - " 'Nicasio, United States',\n", - " 'Nord-Pas-de-Calais, France',\n", - " 'Normandy, Auvilliers, France',\n", - " 'Normandy, France',\n", - " 'North Carolina, United States',\n", - " 'North Cornwall, England',\n", - " 'North East Victoria, ',\n", - " 'North East Victoria, Australia',\n", - " 'North Wootton, England',\n", - " 'North Yorkshire, England',\n", - " 'Northeastern Brazil, Brazil',\n", - " 'Northern Holland, Netherlands',\n", - " 'Northern Wisconsin, United States',\n", - " 'Northwest, United States',\n", - " 'Nottinghamshire, England',\n", - " 'Odell, Bedfordshire, England',\n", - " 'Ontario, Canada',\n", - " 'Oregon Coast Range, United States',\n", - " 'Oregon, United States',\n", - " 'Oristano, Italy',\n", - " 'Orkney Islands, Scotland',\n", - " 'Orkney Isles, Scotland',\n", - " 'Oviken, Sweden',\n", - " 'Oxfordshire, Great Britain',\n", - " 'Passendale, Belgium',\n", - " 'Pays Basque, France',\n", - " 'Pays d’Auge, Normandy, France',\n", - " 'Peekskill, United States',\n", - " 'Pembrokeshire, United Kingdom',\n", - " 'Pembrokeshire, Wales',\n", - " 'Pennsylvania, United States',\n", - " 'Pesaro-Urbino, Italy',\n", - " 'Petaluma, California, United States',\n", - " 'Piave Valley, Italy, Italy',\n", - " 'Piedmont, Italy',\n", - " 'Piemonte, Italy',\n", - " 'Pienza, Italy',\n", - " 'Pinconning, Michigan, United States',\n", - " 'Piora Valley, Switzerland',\n", - " 'Po valley region, Italy',\n", - " 'Poitou-Charentes, France',\n", - " 'Pokolbin, Hunter Valley, Australia',\n", - " 'Port Townsend, United States',\n", - " 'Postel, Belgium',\n", - " 'Prince Edward County, Ontario, Canada',\n", - " 'Prince Edward Island, Canada',\n", - " 'Provencale, France',\n", - " 'Provence, France',\n", - " 'Puimichel in Provence Alpes, France',\n", - " 'Pullman, Washington, United States',\n", - " 'Pyrenees, France',\n", - " 'Pyrenees-Atlantiques, France',\n", - " 'Pyrénées, France',\n", - " 'Pyrénées-Atlantiques, France',\n", - " 'Póvoa de Lanhoso, Portugal',\n", - " 'Quebec, Canada',\n", - " 'Queenstown, New Zealand',\n", - " 'Québec, Canada',\n", - " 'Rhone Valley, France',\n", - " 'Rhone-Alps, France',\n", - " 'Rhône-Alpes, France',\n", - " 'Richfield, Wisconsin, United States',\n", - " 'Rio Grande do Sul, Brazil',\n", - " 'Romanian Carpathians, Romania',\n", - " 'Roncq, France',\n", - " 'Roxburghshire, Scotland',\n", - " 'Sardegna, Italy',\n", - " 'Sardinia & Campania, Italy',\n", - " 'Savoie, France',\n", - " 'Schoonrewoerd, Leerdam, Netherlands',\n", - " 'Seattle, Washington, United States',\n", - " 'Sebastopol, California, United States',\n", - " 'Serra da Canastra, Minas Gerais state, Brazil',\n", - " 'Serra da Estrela, Portugal',\n", - " 'Setubal, Palmela and Sesimbra, Portugal',\n", - " 'Severn Valley, England',\n", - " 'Shelburne Farms, United States',\n", - " 'Somerset, England',\n", - " 'Sonoma, California, United States',\n", - " 'South Australia, Australia',\n", - " 'South East England, United Kingdom',\n", - " 'South West England, England',\n", - " 'South West England, United Kingdom',\n", - " 'Southern California, United States',\n", - " 'Southwestern Wisconsin, United States',\n", - " 'St Antoine, France',\n", - " 'St. Gallen (canton), Tufertschwil, Switzerland',\n", - " 'St. Louis, Missouri, United States',\n", - " 'Staffordshire, England',\n", - " 'Stawley, near Wellington, Somerset, England',\n", - " 'Stewarton, Scotland',\n", - " 'Stonegate, East Sussex, England',\n", - " 'Stoneyford, Ireland',\n", - " 'Stranraer, Scotland',\n", - " 'Sulzberg, Austria',\n", - " 'Svaneti, Samegrelo, Georgia',\n", - " 'Swabia, Germany',\n", - " 'Swaledale, North Yorkshire, England',\n", - " 'Tain, Scotland',\n", - " 'Tasmania, Australia',\n", - " 'Taxco, Mexico',\n", - " 'Tieton, Washington, United States',\n", - " 'Timsbury, Somerset, England',\n", - " 'Timsbury, Somerset, Scotland',\n", - " 'Tipperary, Ireland',\n", - " 'Tomales, California, United States',\n", - " 'Treviso, Veneto, Italy',\n", - " 'Troyes , Aube, France',\n", - " 'Tuscany, Italy',\n", - " 'Umbria, Lazio, Italy',\n", - " 'Upper Corsica, France',\n", - " 'Utah, United States',\n", - " 'Valencia, Spain',\n", - " 'Valpadana, Italy',\n", - " 'Veneto, ',\n", - " 'Veneto, Italy',\n", - " 'Veneto, Trentino, Italy',\n", - " 'Vermont, United States',\n", - " 'Victoria, Australia',\n", - " 'Virginia, United States',\n", - " 'Vorarlberg, Austria',\n", - " 'Västra Götaland, Sweden',\n", - " 'Wales, Great Britain',\n", - " 'Wales, London, Wales',\n", - " 'Wallonia, Belgium',\n", - " 'Websterville, VT, United States',\n", - " 'West Bengal, India',\n", - " 'West Pawlet, VT, United States',\n", - " 'Wigtownshire, Scotland',\n", - " 'Wisconsin, United States',\n", - " 'Zasavica, Serbia',\n", - " 'island wide, Cyprus',\n", - " 'massif des Causses, France',\n", - " 'old Liburnia (Dalmatia), Croatia',\n", - " 'province of Brittany, France',\n", - " 'Äänekoski, Finland'}" - ] - }, - "execution_count": 55, - "metadata": {}, - "output_type": "execute_result" - } - ], + "metadata": { + "scrolled": true + }, + "outputs": [], "source": [ - "locs=set(data[\"location\"])\n", - "locs" + "locs=set(data[\"location\"])" ] }, { "cell_type": "code", - "execution_count": null, - "id": "f3bb9a47-56fa-49c4-8761-0db015944446", - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, + "execution_count": 14, "id": "debb780e-ec13-4502-ac44-6001335e507d", "metadata": {}, "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "eed3ac7b-5283-4d8e-bc26-61e1d821ccaf", - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": 69, - "id": "0043fe0d-e2d2-48f0-8953-ffc3dee52ba6", - "metadata": {}, - "outputs": [], "source": [ "def str_to_gps(loc):\n", " l=loc.split(\",\")\n", @@ -3013,437 +2141,33 @@ }, { "cell_type": "code", - "execution_count": 70, - "id": "710341db-408f-4a4a-a849-65b963582ebc", + "execution_count": 15, + "id": "eed3ac7b-5283-4d8e-bc26-61e1d821ccaf", "metadata": {}, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "b78765c7ef7a4fad8cb4520512a198c8", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - " 0%| | 0/390 [00:00\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
cheesemilkcountryregionfamilytypetexturerindcolorflavoraromavegetarianveganlocationlatitudelongitude
0AarewassercowSwitzerlandNaNsemi-softbutterywashedyellowsweetbutteryFalseFalse, Switzerland46.7985628.231974
1Abbaye de BellocsheepFrancePays BasqueNaNsemi-hard, artisancreamy, dense, firmnaturalyellowburnt caramellanolineTrueFalsePays Basque, France47.6867907.392763
2Abbaye de BelvalcowFranceNaNsemi-hardelasticwashedivoryNaNaromaticFalseFalse, France46.6033541.888334
3Abbaye de CiteauxcowFranceBurgundyNaNsemi-soft, artisan, brinedcreamy, dense, smoothwashedwhiteacidic, milky, smoothbarnyardy, earthyFalseFalseBurgundy, France47.2780874.222486
4Abbaye de TamiécowFranceSavoieNaNsoft, artisancreamy, open, smoothwashedwhitefruity, nuttyperfumed, pungentFalseFalseSavoie, France45.4948956.384660
...................................................
1182SveciaostcowSwedenLow-laying regionsNaNsemi-hard, brinedcreamy, supplerindlesspale yellowacidicNaNFalseFalseLow-laying regions, Sweden59.67497114.520858
1183SwaggoatAustraliaSouth AustraliaNaNfresh firm, artisancreamy, crumblyash coatedwhiteacidic, creamyfreshTrueFalseSouth Australia, Australia-30.534367135.630121
1184SwaledalesheepEnglandSwaledale, North YorkshireNaNhardsemi firmNaNyellowsmooth, sweetfloralTrueFalseSwaledale, North Yorkshire, England54.382993-1.984136
1185Sweet Style SwissNaNSwitzerlandNaNsemi-hard, artisanfirm, supplewaxedNaNnuttynutty, sweetFalseFalse, Switzerland46.7985628.231974
1186Swiss cheesecowUnited StatesSwiss Cheesehard, artisan, processedfirmrindlesspale yellownutty, sweetNaNTrueFalse, United States39.783730-100.445882
\n", + "

1140 rows × 16 columns

\n", + "" + ], "text/plain": [ - "1" + " cheese milk country region \\\n", + "0 Aarewasser cow Switzerland \n", + "1 Abbaye de Belloc sheep France Pays Basque \n", + "2 Abbaye de Belval cow France \n", + "3 Abbaye de Citeaux cow France Burgundy \n", + "4 Abbaye de Tamié cow France Savoie \n", + "... ... ... ... ... \n", + "1182 Sveciaost cow Sweden Low-laying regions \n", + "1183 Swag goat Australia South Australia \n", + "1184 Swaledale sheep England Swaledale, North Yorkshire \n", + "1185 Sweet Style Swiss NaN Switzerland \n", + "1186 Swiss cheese cow United States \n", + "\n", + " family type texture \\\n", + "0 NaN semi-soft buttery \n", + "1 NaN semi-hard, artisan creamy, dense, firm \n", + "2 NaN semi-hard elastic \n", + "3 NaN semi-soft, artisan, brined creamy, dense, smooth \n", + "4 NaN soft, artisan creamy, open, smooth \n", + "... ... ... ... \n", + "1182 NaN semi-hard, brined creamy, supple \n", + "1183 NaN fresh firm, artisan creamy, crumbly \n", + "1184 NaN hard semi firm \n", + "1185 NaN semi-hard, artisan firm, supple \n", + "1186 Swiss Cheese hard, artisan, processed firm \n", + "\n", + " rind color flavor aroma \\\n", + "0 washed yellow sweet buttery \n", + "1 natural yellow burnt caramel lanoline \n", + "2 washed ivory NaN aromatic \n", + "3 washed white acidic, milky, smooth barnyardy, earthy \n", + "4 washed white fruity, nutty perfumed, pungent \n", + "... ... ... ... ... \n", + "1182 rindless pale yellow acidic NaN \n", + "1183 ash coated white acidic, creamy fresh \n", + "1184 NaN yellow smooth, sweet floral \n", + "1185 waxed NaN nutty nutty, sweet \n", + "1186 rindless pale yellow nutty, sweet NaN \n", + "\n", + " vegetarian vegan location latitude \\\n", + "0 False False , Switzerland 46.798562 \n", + "1 True False Pays Basque, France 47.686790 \n", + "2 False False , France 46.603354 \n", + "3 False False Burgundy, France 47.278087 \n", + "4 False False Savoie, France 45.494895 \n", + "... ... ... ... ... \n", + "1182 False False Low-laying regions, Sweden 59.674971 \n", + "1183 True False South Australia, Australia -30.534367 \n", + "1184 True False Swaledale, North Yorkshire, England 54.382993 \n", + "1185 False False , Switzerland 46.798562 \n", + "1186 True False , United States 39.783730 \n", + "\n", + " longitude \n", + "0 8.231974 \n", + "1 7.392763 \n", + "2 1.888334 \n", + "3 4.222486 \n", + "4 6.384660 \n", + "... ... \n", + "1182 14.520858 \n", + "1183 135.630121 \n", + "1184 -1.984136 \n", + "1185 8.231974 \n", + "1186 -100.445882 \n", + "\n", + "[1140 rows x 16 columns]" ] }, - "execution_count": 76, + "execution_count": 18, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "len(errors)" + "data" ] }, { "cell_type": "code", - "execution_count": 77, - "id": "2fc155c5-04d6-4e4e-a3be-e4b85a96cf40", - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "466d8424-dcf5-430b-b38d-5789886b0a0a", - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "0ac0c719-1318-4110-94e1-d040b76a7614", - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "6a409cbe-e43e-45a1-a288-ad86cec8d049", - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "a11adbb8-0ed1-4184-99e9-a0d17af246b5", - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "f3572930-ea91-4d5c-ae95-b0fa9a82f00b", - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "279a0428-b8cd-4877-8fd7-bed5a7a6d654", - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "5a24e704-89c0-41d0-ac53-59a17037a6b9", - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "0120c67b-9558-40f5-a237-79f758e6854e", - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "f1ea4400-abc8-4c46-8f6e-240e7fde3c93", - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "204d1446-e58f-4585-8ac0-7466930e4291", - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, + "execution_count": 19, "id": "d41b1dc8-90df-44b8-9d83-d218f82a3637", "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAGdCAYAAAA8F1jjAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAQVBJREFUeJzt3Xt8VOWB//HvJJIQwEyAhCRAQgItFyWAAcRIzcqlBKVdW1Kl1a6XZbGtaKtQNeDPW20NxaqtFrWyW3VXq0hB3YpS2CAikiKEOwKWlJgUMhFKmCAEiOT8/khnzGQumcDMnJOZz/v1mpfkmZMzT46TOd88V5thGIYAAAAsKM7sCgAAAPhDUAEAAJZFUAEAAJZFUAEAAJZFUAEAAJZFUAEAAJZFUAEAAJZFUAEAAJZ1gdkVOF/Nzc06dOiQLrzwQtlsNrOrAwAAgmAYho4fP66+ffsqLs5/u0mnDyqHDh1SVlaW2dUAAADnoKamRv379/f7fKcPKhdeeKGklh80OTnZ5NoAAIBgNDQ0KCsry30f96fTBxVXd09ycjJBBQCATqa9YRsMpgUAAJZFUAEAAJZFUAEAAJZFUAEAAJZFUAEAAJZFUAEAAJZFUAEAAJZFUAEAAJZFUAEAAJZFUAEAAJZFUAFgebXORm2oPKJaZ6PZVQEQYZ1+rx8A0W3JpmrNW75TzYYUZ5NKp+dpxthss6sFIEJoUQFgWbXORndIkaRmQ5q/fBctK0AMIagAsKwDR064Q4rLWcNQ1ZGT5lQIQMQRVABYVm5qd8W12QE+3mZTTmo3cyoEIOIIKgAsK9OepNLpeYq3taSVeJtNj04frkx7ksk1AxApDKYFYGkzxmarcHCaqo6cVE5qN0IKEGMIKgAsL9OeREABYhRdPwAAwLIIKoBFba+p1+IPKrW9pt7sqgCAaej6ASxo7uvbtGzLQffXxfn99Ph1o8yrEACYhBYVwGK219R7hBRJWrblIC0rAGISQQWwmI+qjvos31wVXUGF/XsABIOuH8BiLs3p5bN8TE7PCNckfNi/B0CwaFEBLGZkVk8V5/fzKCvO76eRWZ0vqJTtcei+N3aobI/DXcb+PQA6ghYVwIIev26UbiwYoM1V9RqT07NThpTpz3yoLdXHJEmvbKxRfnaKlt82PuD+PayVAqAtggpgUSOzOmdAkVpaUlwhxWVL9TGV7XHoor52xdnkEVYC7d9T62zUgSMnlJvanSADxCC6fgCE3Jq9n/ksX7vvcIf271myqVrjF6zR9Ys3avyCNVqyqTqs9QZgPbSoAAi5iUP76JWNNV7lVw5JkxTc/j3+xrIUDk6jZQWIIbSoAAi5ScMylJ+d4lGWn52iScMy3F9n2pNUMKi339ARaCwLgNhBi4rJ6H9HtFp+23iV7XFo7b7DunJImkdICUZuavcOjWUBEJ0IKiZiLQlEu0nDMjocUFxcY1nmL9+ls4YRcCwLgOgV9q6fgwcP6vvf/7569+6tpKQk5eXlafPmze7nDcPQAw88oMzMTCUlJWny5Mn661//Gu5qmY61JID2zRibrfUlE/TqrMu0vmQCQR6IQWENKvX19Ro/fry6dOmid999Vx9//LEef/xx9ez55ZTLhQsX6qmnntJzzz2njRs3qnv37ioqKtKpU6fCWTXT0f8OBKe9sSwAoltYu35++ctfKisrSy+88IK7LDc31/1vwzD061//Wv/v//0/XXPNNZKk//7v/1Z6errefPNNffe73w1n9UxF/ztiwdLN1Vq5y6GpwzN07RhaQwB0XFhbVP73f/9XY8aM0bXXXqs+ffrokksu0eLFi93PHzhwQA6HQ5MnT3aX2e12jRs3TuXl5T7Pefr0aTU0NHg8OqOOrCUBdEaFC9fo7j/uVNnew7r7jztVuHCN2VUC0AmFtUXlb3/7m5599lnNmTNH8+fP16ZNm/TjH/9YCQkJuummm+RwtOz/kZ6e7vF96enp7ufaKi0t1cMPPxzOakdMMGtJAJ3R0s3Vqj7qOd6q+mijlm6upmUFQIeEtUWlublZ+fn5evTRR3XJJZfo1ltv1axZs/Tcc8+d8znnzZsnp9PpftTUeC8q1ZnQ/45Iq3U2akPlkbAO3F65y/cfGqt214XtNQFEp7AGlczMTF100UUeZcOGDVN1dcsy2BkZLdMW6+o8P7zq6urcz7WVmJio5ORkjweA4ERqSfqpw33//k65ON1nOQD4E9agMn78eO3bt8+j7JNPPtGAAQMktQyszcjIUFlZmfv5hoYGbdy4UQUFBeGsGhBzIjUlvtbZqH49u6mfvatHeXavJLp9AHRYWMeo3HXXXbr88sv16KOP6rrrrtNHH32k559/Xs8//7wkyWaz6c4779TPf/5zffWrX1Vubq7uv/9+9e3bV9/61rfCWTUg5gSaEh+qrse2ixh+J7+fnI1NmnJxOiEFwDkJa1AZO3as3njjDc2bN08/+9nPlJubq1//+te64YYb3Mfcc889OnHihG699VYdO3ZMX/va17Ry5Up17do1wJkBdNTL5Z96lYVySryvFps3th7S+pIJjMECcM5shmEY7R9mXQ0NDbLb7XI6nYxXAfzYXlOvaxZt8Cq/uWCAHrpmeEheY0PlEV2/eKNX+auzLlPBoN4heQ0A0SPY+ze7JwMx4KOqoz7LXyz/NGQDal2LGLbGIoYAzhdBBYgBl+b08vtcqAbUsoghgHBg92QgBvzgvzf7fS4UA2prnY06cOSECgenaX3JBBYxBBAyBBUgBjiOnwn4fLeEc29cXbKpWvcu2+n++pfFeexyDCBk6PoBYsCF7QSRk2eaz+m8tc5Gj5AiSfcu2xnWVW8BxBaCih8Pv7VLl5eW6eG3dpldlYAisRw6OrdaZ6NONPkPInHSOQ94ffHDAz7LX9rwZXlH36O8pwG0RtePD4Pve0dnzrbM2n6h/FO98lG1PvnF1SbXylvbxbVKp9PkDm+bq456LfTW2tV5Gfqs4dQ5jSfZfcj37uUfH2wp7+h7lPc0gLZoUWnj4bd2uUOKy5mzhuVaViK1HDo6tyWbqvWT17YFPObtnQ5ds2iD5r4e+DhfrhnV12d5enLXDr9HeU8D8IWg0safP/a9u+vqPdba9TXQcuiA1LLIW8mynQFbU1pbtuWgttfUd+g1rh2Trb5271Wkl289pIpP6zv0HuU9DcAXgkobRRf53t3168Ostesri2vBF9f4jt+tq9S3ntmgji47vbmqY0FFkn513UivsrOGIf2z+6a1QO9R3tMAfCGotPHgNcOVEO/5aZkQb9ODIVpmPFRYXAttLdlUrfEL1uj6xRtV+s5encvmGH8/2vHWC38BY3ROzw69R3lPA/CFvX78ePitXVq9p05fH5ZuuZDSWq2zkcW1oFpno8YvWBN0N48/eX2T9acfX9Hh71uyqVrzl+/SWcNwBwzXINiOvkd5TwOxIdj7N0EFiAL+NgQ8F7OvHKS7pw7t8PcRMAB0RLD3b6YnIyxySla4/121YJqJNYkNuandQ3auRWsrdeAfJ/TMDaMltQSQzVVHZbPZNHpAz4BdNwQUAKFGUEHItQ4prq8JK+H18SFnSM/3zk6HttfUa6/juNfKsz0S4rTrZ1ed92u49gfKTe1OwAHgF4NpEVJtQ0p75QiNNXs/C/k5y/Z85hVSJOnzM83n/f+z9cDf8QvWaMmm6vM6H4DoRVABosAFttD/Kp/54mzA58c+suqczsvCbgA6gq4foJOrdTbqfzZ+GvLzbqs5FvD5wyea3P/+zjMfavvfj2lk/xT98bbxAb8v0MJudAEBaIsWFYSUv7EojFEJH183/lD4y4HAi7+lde8iqaVbb3P1MTU1S5urj7XbLcTCbgA6gqCCkGsbSggp4eXrxh8Jm+6fou8886HP5/yVSyzsBqBj6PqBlm6u1spdDk0dnqFrx4Rmp1rCSeS4bvyuBdfays9O0T7HcZ04E3jMSUeUz5soSdr+92M+n99ac0y1zka/4WPG2GwVDk5j3RUA7WLBNz9iZepk4cI1qj765SDG7F5JWnfPRBNrhHPVesG1jw85tXbfYV05JE2SNPOlipC9TmZyV5XPnySppeVkc/Uxn8fF2aTS6XnuFWoBoLVg7990/fgQK1Mnl26u9ggpklR9tFFLN0fnzxvtMu1JKhjUW5n2JE0alqFHvpWnScMyQj51ubbhlHuGTqCBs8zmARAKBJU2Ymnq5MpdDp/lq3bXRbgmCKeJQ/u0e0zXLjZ9e1Rm0OesOvLl5oVVC6ZpTHaKzw8T12weADhXBJU2Ak2djDZTh2f4LJ9ycXqEa4JwmjQsQ/nZKR5l8TZpTHaKhmVcKEk61WTojW21QZ3P1wydAand1RzksQDQEQymbcM1g6J1WInWD9trx2Tr6TX7vcaohGpALaxj+W3jVbbH4R63clFfuyo+rdftf9ja7vcmXhCnprPNaja+nKEjtWyEmJvaXZ81nNKyLQe9vs8mMZsHwHljMK0PvrasT+2RoDV7P9PEoX00aZjvlojOaunmaq3aXacpF6cTUmLAkk3VHt2bwfpGXoZmFQ7UXsdx9/fH2aSrh2fo7Z3e3YiZyYkqnz85RLUGEG2CvX8TVPxoPYNi9itbtKXVzIb87BQtb2f1TcCKap2NGr9gzTkvEGezSTKkYL/9p1MGq3h0f1pVAHhh1s95cs2g+PiQ0yOkSNKW6mMq2+N7ICpgZee7iq3RgZAiSb9a9UlUz5wDEH4ElXa8vcP3AMN3/JQDVmbGKrb+Zs5tr6nX4g8qtb0m8FL9AGIbQaUdg9J6+Czff/hzj1aVWmejNlQeicppzIgebZevj1RmaTtzbu7r23TNog36xYq9umbRBs19fVuEagIr4PMSHcEYlXbUOhtVULrG7/P52SmaMTbLY3Ahq3Gem7I9jqgdsGw1rjFYr2+u1htbD4X99eJtNq0vmaBMe5K219TrmkUbvI55a/blGpnVM2ZWhY5VrQdz83kZ24K9fzM9uR2Z9iT9sjhPJct2+uyb31J9zGMMi6uZu3Bwmikfsp31Zj/9mQ/d1/GVjTUMWA6zTHuSMu1JOnmmKexBxWbznKb8UdVRn8dtrqr3mlHETSy6+FtQ06zPS3QOdP0EYcbYbG2YN1GTg1jhUzJvgbjpz3yomS9V6JWNNZr5UoWmB9jB1gyL11Xq24vWa/G6So/ysj0OBiybZNKwDHVPiA/raxiGVDg4zf31pTm9fB6Xk9otZlaFjlWxtKAmQoegEqRMe5K+Ny4rqGPNWCDO6jf7/EdW6Rfv7NXWGqd+8c5e5T+yyv2cv71o1u47HKnqxaylm6tDuquyP8u3/N09cHZkVk8V5/fzeL44v5+SEi7gJhblfA3mjtYFNRE6dP10gGsp8rZrqswYm+W1QFygZsxw9MH7u9m/s6NWF/W168CRE+qeEK8TZ85GvO9/8bpKHT3R5FF29ESTFq+r1KzCQZo4tI9e2Vjj9X2unX8RHks2VeveZTsj8lqP/fkT97+L8/vp8etG6eq8DK3de1hXDk3TpGEZqnU2xsyq0LHKNZi7I5+XAINpz0Hrpchd40BaLxAX6JcuXAPJyvY4NPOlCp/P/XONLrdw9/2PePBdNZxuVnJinHY8fJW+vWi9ttY4vY4bnZ2iZf8ch9J6jIrEonrhdr4Lv52v2ycM0jNrK71+D3ytCs0YlegT7Oclohsr01qQr5tD69kQ56vtzT6QUL5uazklK7zKhvdN1q5DDV7l9109VLMKB7m/9hUAER4bKo/o+sUbTXv9tuG59fuRmxgQG1iZNoz+9akPNGjeCv3rUx906PvCPZBs+W3j9dMpg4M69nxfd+nmas188SMt3fzliqMjHnzX57G+Qkpy1ws8QorU0rX2yLfyCCkRkJvaPSJrqPzXTaN9lrf96+isYWjFjlrVOhvdq0ITUgBIBJUOyylZoR2HGnTWkHYcavDZguBPJAaS7fYRCvz53uK/eJUFsxBT4cI1uvuPO1W297Du/uNOFS5sWWem4XRz0K/9k0lfDfpYhF6mPUmzrsgN62tcoJbw2Xbg7FXDM3yujvvzFXtYbh+AF4JKB/hrQQm2ZaXtqqChHki2vaZe7+4691k+SzZVa/yCNbp+8Ua/N4ylm6tVfdQzxFQfbdTSzdXqkRD83+hjcnqecz3RMf6Wqr/la+ENKl+o5T11aW4vd+uNTS2DpFv/HrTGlGQAbTHrpwN21/purfBX7suMsdkqHJwWlj54fwtpBSPYhZhW+glCC1fu0/XjcvT8Bwfafa3i/H4amUVQiYS5r2/Tsi0H3V+7ZtxEyrxlOyXbl109hlreV+tLJmh9yQSt2FGrn6/Y4/E9rm5Jun4ASLSodMjFmb4H+/gr9ydcffD+FtJ6a/blPsurFkxz/zvY8TNTh/seP3L48zMBQ4pN0o8nfkVvzb48ojfKWFXrbNT/lFd5hBRJWrbloLtl5cCREyF5rdxe/t/HzZLf91WmPUnTRmQG7A6N1J4wbJAIWBdBpQP+98dXdKg80vwtpLXXcdzrZtA6pEjBj5+5dky2sgPcmPwxJBUMSqUlJQJcXXj3v7Xb5/Obq1puxrsPek8Z76g4SYdPnA54TNsentbvq0DdocF0RYYCGyQC1kZQ6aCqBdM0om+y4m3SiL7JXjd8sz1+3Si9NftyzRjdX1MvTtdlA3t5dOlILTeDtn+hZtqTfP7l66vVZ909E9U1vmNzRli4KzLaduH54hof9Je//aPD5x/Rz+4OtPE2m+69eqiGt9OiaBgKOC5rxthsrS+ZoFdnXab1JRM0Y2y2367IULesbK+pD9jqBMB8jFE5B1ZpQfHn4T997F5PZeXuOq/nfY0BuP1l34vF3f5yhX77fe8pppOHpevtDgzc/eGVAxlzEAG+uvBamzAkzd2qNXV4hsr2em9TMLJ/snYcbJBhtHTZjf9KbxVdnKHJF6V7rHOy4+/H9Mt39wa1aNz6kgkBx2W5NkkM9HOEY+xKoA0Saf0DrIEWFYs61755X3v+tOWrdWPdft/76vgr/+33R3utw2GTNPXidJ/H9+qWELBOCI321kd5b99hd9eGr268vildtfOfIUVq6bIrrzzqDilSS6jISe2mX64MLqRcoI6Py4rUnjD+xnUxKw2wDoKKBZ1P37y/PX9c/E2JLvyK7311fJW7QtSGeRP1jeEZSu4ar7y+Lc3/vlpwJD74raR118a6eybqse/k6evD+uix7+TpG3mZQQ2qbq/lpjVbnHTD8+UdqmO4p/K7+BvXRWsKYB10/VhMsNOE/fG3wd9j38lTXcNpVR7+XKk9vFs3fvv90VpRssJjxVDbP8tb87VX0X3fvEjjF6zxWm3UhQ/+yDlw5ITf/w+tte7auHZMtq4d0zIu5J4/em9SGGeTV0uGq8WjdViJkySb9yyfpmbpw78dVU7JCv1h1rh2N8XcXlOvj6qO6tKcXu12GYXC49eN0o0FA7S5ql5jcnryXgUsJmItKgsWLJDNZtOdd97pLjt16pRmz56t3r17q0ePHiouLlZdne+/yGPF+S6z79rhubX87BS9+lGNfrXqE72x9ZBmvlSh6c986H5+8bpKfXvRes2/eqi7heQbwzO0Yd5Ej+4nXyHq3mU79dKHB/z+df3INRczHTmCfHWZ+LLzoNOrW9FfyPmPr3mPL/LV4lFanOd3ITeX9loJ287A+dWf90VkOf2RWT0184qBhBTAgiLSorJp0yb97ne/04gRIzzK77rrLq1YsUJLly6V3W7X7bffrunTp+vDDz/0c6bo5+sv1Y72zS+/bbzHBn+SvHZW3lJ9TGV7HLr7jzt09ESTJGlrjVO9unfRjoemurufWrecZPXq5jOQPLfO//opky/yPWYF4eEKECXLdgZsWXlz2yG9te2QFhR/uYu2r/eeTVJe/2T3HjytFQ5O00PXXKTDDac1aVgf902+cHCarliwRl/4qYC/VkJ/M3BuLBjgFSBqnY06cOREu60zADq/sLeofP7557rhhhu0ePFi9ez55YeN0+nUf/3Xf+mJJ57QxIkTNXr0aL3wwgvasGGD/vIX7z1oYkWgvvmL7l+hnJIVuuj+9vcXar3Bn79xKz9dut0dUlyOnmjS43/e67P7qXtCfFB/rbvE28RNxASFg32PN2rLtUqsq2Wl7XvP1TByx6vbvFpBlmyq1uWla3T/m7v11Jr9+taiDe7nM+1JGpJxYcDX9tVKGGgGTmuRWl8FgDWEPajMnj1b06ZN0+TJkz3KKyoq1NTU5FE+dOhQZWdnq7zc/8C706dPq6GhwePRGdz+coVGPLTS7zTg1nytK5FTskIn/5kpTjapQ5shThzax2d5/ckvfJav3O3w2f108kyzSqfnBf26l+X6nlGB8PrJq1uDGqcifRkYXAOkCwenaX3JBC26/hLJ+HLp+9brmNQ6G71abAxJ85bvdIee/7x5bLuv3baVMJgZOB1ZXyVSq9oCCK+wBpXXXntNW7ZsUWlpqddzDodDCQkJSklJ8ShPT0+Xw+F/fY7S0lLZ7Xb3IysrK9TVDrnckhV6e5dDDafO6u1dDuUGETJaT+f014ISTMuK1NK60i+la9D1nXqx9+62ru6nGWOz9dh3ggsrr9xaEPRrIjRaBqIGv1hZvM2mHQePebRQrPvksHp2T/AKO65Q428sS7MhdytJpj1JvywOPtRK0id1x5WRnOhR1nYgdrBjuGh1AaJH2IJKTU2NfvKTn+iVV15R167B3yTbM2/ePDmdTvejpsZ7hks4LN1crZkvfqSlmzv2gXf7yxVeH+qG/C+wNvXJ9zWwZIWmPvm+u+xkk89D/Za7uAbJLl5XqWduyPd5THJXz2FKvbp30dyioQGnhg5OD9ysL0nl8ya2ewxCr6MbU94zdYjHom2BuvlcYdXfWi1tZwfNGJut8nkTNTS9h8/X3vLpl4GqcOEa3f3HnXI0tCzH3zOpi899oYJZXyVSq9oCiIywDaatqKjQZ599pvz8L2+QZ8+e1bp16/Tb3/5Wf/7zn3XmzBkdO3bMo1Wlrq5OGRm+N76TpMTERCUmJvp9PhwKF65R9dGWD7myvYf19Jr9WndPcDfijiyk1ro7Z2/d58opWaGqBdPUrYvvUNKti//XzX9klccg2e4J8V7HuHbSXbyuUit3OTR1eIZmFQ6SFHiX50A3w3Ctd4HgONtLr630SIxTXn97wG6++ct36axheP1/XVDsOWDX9s8B175mB91QMED3v+m971D9yTOSWv4IcP1+uZ9rbNIndce9BtG6xtH4q5cUuVVtAURG2ILKpEmTtHOn55oMt9xyi4YOHap7771XWVlZ6tKli8rKylRcXCxJ2rdvn6qrq1VQYJ0uA18fotVHG7V0c7WuHZPd7vcXfiXN51LzbRdSa92C0rb840em+RyT8vEjvvcZWryu0muQ7IkzZz2+jrNJPy0aIkmaVTjIHVBaa7usuYu/sQQ//9bFmjQsnZuBSWqdjXpmbWXQx1/51T5qPOM9TsnVQlEwqLffsOoKshVV9bLZpPwBPf3+f09J8p2oU5Ja1vNZ6WcrhlW763z+jgUK0VJoZs4BsI6wdf1ceOGFGj58uMeje/fu6t27t4YPHy673a6ZM2dqzpw5eu+991RRUaFbbrlFBQUFuuyyy8JVrQ77/Ye+p96+sMH/lNzW/C0133YhtU/qPvf5/a5yV8uK1NKSEmgzxHd21rZbr9bjCTrK32qe378sh5DSjnAO8PS3WqyvmVo2SYkJ8V7T1tu2UARa+j7TnqRvjOyraSP6Bvz/Pianl8/fgdE5X+455MsUP9sxBFOvSKxqCyAyTF2Z9sknn1RcXJyKi4t1+vRpFRUV6ZlnnjGzSl6a/CwGcaYp2HkV0oEF03T7yxVat/+wCr+S5nOTv8HpPbTXR1gZ3Kp/318LSltX52Vqa40z4DHn+xcmq3l2nK9VfV1rmISCv5aE5bcV6OSZZv3nukpt+vSoCr+Spln/MlDXLNrgdY7nb8zXpGH+u17PRaY9SQuK8zRv2U41q+Wvo9LiL7uJrh2TrafX7PdouczulRRUi6U/7bW6AOg8bIZhBH/HtaCGhgbZ7XY5nU4lJwfebv5clL7zsX7nY0GzHxbmquTqi0L6Wr66dwK1nATSeoyKJHVPiNeppmaPfv1zuUmy0Na5qXU2uhfQc4m32bS+ZEJIr+OSTdVe4zd8/X9e/EGlfrFir1f5/dOGaeYVA0NWn9Zcuy77Cw5LN1dr1e46Tbk4/bxCCoDOIdj7N3v9tOPm8bk+g8pN43MleYaLcw0Vrb9/6pPv65O6zzU4vYdW3vUv53yuLfdP8Rok296Nwh9XONn5d6d7x9xwtAhEs0gN8Ay2JcGMXYP9jXlyce05BACt0aIShCWbqlWyfKcMo6Vv/T+uyNW/fy1XBaVrvI4937BiNa27K9oKR4tAtIpUi0pHzH19m8eS9a5ZYAAQCcHevwkqQap1NuqFDw9o8boD7a76GS1hxdfNta1XZ12mgkG9I1epTizYbplI2l5TzzgjAKag6ycM/vOD9kNKNPE3i8SFKZ8dY8UBniOzCCgArI2gEqT2btrRKDe1u2w2yV+bG1M+O669cRoAAE9h35QwWvhautuXaOr22Vx1VKP62/0e09AY/CqoQCRsr6nX4g8qtb0m+P2OAFgbLSpB8rd0973Lvlx9N1pCypJN1V674/qycpfD54q2gBkYHAxEJ4JKB/gaY9B6MGQ0rDFS62wMKqRI0uUMooVFbK+p9wgpkrRsy0HdWDCAMThAJ0dQ6SB/YwzCvepopBw4ciLoAcOL1laqf69unfLnRHTxt1Hm5qp6ggrQyTFGJQSiaVv53NTuXvuySC3h65aCAR5lnfnnRHQxYwG7cArnnlBAZ0NQCYFAq466hPODJ5Tndu3L0jqs2P7ZQvR1H5vHtf05ATP42yizM7amLNlUrfEL1uj6xRs1fsEaLdlUbXaVAFPR9RMC7W0rH85uoXCc2zUWp6KqXjablD+gpzLtSap1Ngb8OQEzhWKjTLPHmflrnS0cnNZpx70B54sWlRAItK18OLuFwnnuTHuSvjGyr6aN6Ov+gAz0cwJWMDKrp2ZeMfCcQooVWjKCaZ0FYg0tKiHib9XRcG5GF65zl+1xaM3ezzRxaB9NGubZ3WPF1VWB82WVloz2WmeBWERQCSFfM4LC+cETjnNPf+ZDbak+Jkl6ZWON8rNTtPy28R7HsLoqok2kdrduj7/1mvh9Qyyj6yfMwtldEupzl+1xuEOKy5bqYyrb4zjfqgKW5mvlabNaMmaMzdb6kgl6ddZlWl8ygen/iHm0qERAOLtLQnnuNXs/81m+dt9hry4gIJpYrSWDVkvgSwSVCAnnB0+ozj1xaB+9srHGq/zKIWnnfW4gks5l9g7jrwBrIqjAbdKwDOVnp3h0/+Rnp9Cagk7lfKbs05IBWI/NMIxgV0y3pIaGBtntdjmdTiUnJ5tdnahQtsehtfsO68ohaYQUdCq1zkaNX7DGa4D5+pIJBBDAYoK9f9OiAi+ThmUQUNApWWX2DoDQYdYPgKhhpdk7AEKDoAIgarB6MhB96PoBEFWYvQNEF4IKgKjD7B0getD1A1hcrbNRGyqPhGSzSQDobGhRASzsfNYEAYBoQIsKYFH+dvSlZQVALCGoABYVaE0QAIgVBBXAolgTBAAIKoBlsSYIADCYFrA01gQBEOsIKoDFsSYIgFhG1w8AALAsggoAALAsggoAALAsggoAALAsggoAALAsggoAALAsgkonsHhdpb69aL0Wr6s0uyoAAEQU66hYXP4jq3T0RJMkaWuNU8++X6kt908xuVYAAEQGLSoWtnhdpTukuBw90UTLCoCwqnU2akPlEXbqhiXQomJh7+ys9Vm+cpdDswoHRbg2AGLBkk3Vmrd8p5oNKc4mlU7P04yx2WZXCzGMFhULuzov02f51OEZEa4JACsJ17i1WmejO6RIUrMhzV++i5YVmIqgYmGzCgepV/cuHmW9unehNQWIYfmPrNIv3tmrrTVO/eKdvcp/ZFXIzn3gyAl3SHE5axiqOnIyZK8BdBRBxeK23D9F9109VKOzU3Tf1UMZSAvEsHCPW8tN7a44m2dZvM2mnNRuITk/cC4IKp3ArMJBWnbbeFpSgBgXaNxaKGTak1Q6PU/xtpa0Em+z6dHpw9m9G6ZiMC0AdBJX52Vqa43TqzyU49ZmjM1W4eA0VR05qZzUboQUmC6sLSqlpaUaO3asLrzwQvXp00ff+ta3tG/fPo9jTp06pdmzZ6t3797q0aOHiouLVVdXF85qAUCnFKlxa5n2JBUM6k1IgSWENai8//77mj17tv7yl79o9erVampq0pQpU3TixAn3MXfddZf+9Kc/aenSpXr//fd16NAhTZ8+PZzVAqIW619EP8atIdbYDMMw2j8sNA4fPqw+ffro/fffV2FhoZxOp9LS0vSHP/xB3/nOdyRJe/fu1bBhw1ReXq7LLrus3XM2NDTIbrfL6XQqOTk53D8CYFmsfwGgMwn2/h3RwbROZ0vfaq9evSRJFRUVampq0uTJk93HDB06VNnZ2SovL49k1YBOjfUvAESriA2mbW5u1p133qnx48dr+PDhkiSHw6GEhASlpKR4HJueni6Hw/co9tOnT+v06dPurxsaGsJWZ6CzCLT+BeMMAHRmEWtRmT17tnbt2qXXXnvtvM5TWloqu93ufmRlZYWohkDnxfoXAKJVRILK7bffrrffflvvvfee+vfv7y7PyMjQmTNndOzYMY/j6+rqlJHhe7rdvHnz5HQ63Y+amppwVt2SGDCJtlj/AkC0CmvXj2EYuuOOO/TGG29o7dq1ys3N9Xh+9OjR6tKli8rKylRcXCxJ2rdvn6qrq1VQUODznImJiUpMTAxntS2NAZPwh/UvAESjsAaV2bNn6w9/+IPeeustXXjhhe5xJ3a7XUlJSbLb7Zo5c6bmzJmjXr16KTk5WXfccYcKCgqCmvETa/wNmCwcnMZNCZJaWlZ4LwCIJmENKs8++6wk6corr/Qof+GFF3TzzTdLkp588knFxcWpuLhYp0+fVlFRkZ555plwVqvTYsAkACDWhL3rpz1du3bVokWLtGjRonBWJSq4Bky2DisMmAQARDM2JexEGDAJAIg1bErYyTBgEgAQSwgqnRADJgEAsYKuHwAAYFkEFQAAYFkEFQAAYFkEFQAAYFkEFQAAYFkEFQAAYFkEFQAAYFkEFQAAYFkEFQAAYFkEFQAAYFkEFQAAYFkEFQAAYFkEFQAAYFkEFQAAYFkEFQAAYFkEFQAAYFkEFQAAYFkEFQAAYFkEFQAAYFkEFQAAYFkEFQAAYFkEFQAAYFkEFQAAYFkEFQAAYFkEFQAAYFkEFQAAYFkEFQAAYFkEFQAAYFkEFQAAYFkEFQAAYFkEFQAAYFkEFQAAYFkEFQAAYFkEFQAAYFkEFZyXWmejNlQeUa2z0eyqAACi0AVmVwCd15JN1Zq3fKeaDSnOJpVOz9OMsdlmVwsAEEVoUcE5qXU2ukOKJDUb0vzlu2hZAQCEFEEF5+TAkRPukOJy1jBUdeSkORUCAEQlggrOSW5qd8XZPMvibTblpHYzp0IAgKhEUME5ybQnqXR6nuJtLWkl3mbTo9OHK9OeZHLNAADRhMG0OGczxmarcHCaqo6cVE5qN0IKACDkCCo4L5n2JAIKACBs6PoBAACWRVABAACWRVABAACWRVABAACWZYmgsmjRIuXk5Khr164aN26cPvroI7OrBAAALMD0oLJkyRLNmTNHDz74oLZs2aKRI0eqqKhIn332mdlVAwAAJjM9qDzxxBOaNWuWbrnlFl100UV67rnn1K1bN/3+9783u2oAAMBkpgaVM2fOqKKiQpMnT3aXxcXFafLkySovL/f5PadPn1ZDQ4PHAwAARCdTg8qRI0d09uxZpaene5Snp6fL4XD4/J7S0lLZ7Xb3IysrKxJVBQAAJjC966ej5s2bJ6fT6X7U1NSYXSUAABAmpi6hn5qaqvj4eNXV1XmU19XVKSMjw+f3JCYmKjExMRLVAwAAJjO1RSUhIUGjR49WWVmZu6y5uVllZWUqKCgwsWYAAMAKTN+UcM6cObrppps0ZswYXXrppfr1r3+tEydO6JZbbjG7agAAwGSmB5UZM2bo8OHDeuCBB+RwODRq1CitXLnSa4AtAACIPTbDMAyzK3E+GhoaZLfb5XQ6lZycbHZ1AABAEIK9f3e6WT8AACB2EFQAAIBlEVQAAIBlEVQAAIBlEVQAAIBlEVQAAIBlEVQAAIBlEVQAAIBlEVQAAIBlEVQAAIBlEVQAAIBlEVQAAIBlEVQAAIBlEVQAAIBlEVQAAIBlEVQAAIBlEVQAAIBlEVQAAIBlEVQAAIBlEVQAAIBlEVQAAIBlEVQQFbbX1GvxB5XaXlNvdlUAACF0gdkVAM7X3Ne3admWg+6vi/P76fHrRplXIQBAyNCigk5te029R0iRpGVbDtKyAgBRgqCCTu2jqqM+yzdXEVQAIBoQVNCpXZrTy2f5mJyeEa4JACAcCCro1EZm9VRxfj+PsuL8fhqZRVABgGjAYFp0eo9fN0o3FgzQ5qp6jcnpSUgBgChCUEFUGJlFQAGAaETXDwAAsCyCCgAAsCyCCgAAsCyCCgAAsCyCCgAAsCyCCgAAsCyCCgAAsCyCCgAAsCyCCgAAsCyCCgAAsCyCCgAAsCyCCgAAsCyCCgAAsCyCCgAAsCyCCgAAsCyCCgAAsCyCCmJarbNRGyqPqNbZaHZVAAA+XGB2BQCzLNlUrXnLd6rZkOJsUun0PM0Ym212tQAArdCigphU62x0hxRJajak+ct30bICABZDUEFMOnDkhDukuJw1DFUdOWlOhQAAPoUlqFRVVWnmzJnKzc1VUlKSBg0apAcffFBnzpzxOG7Hjh264oor1LVrV2VlZWnhwoXhqA7gJTe1u+JsnmXxNptyUruZUyEAgE9hCSp79+5Vc3Ozfve732n37t168skn9dxzz2n+/PnuYxoaGjRlyhQNGDBAFRUVeuyxx/TQQw/p+eefD0eVAElfDp6VWsakxNta0kq8zaZHpw9Xpj3JzOoBANqwGYZhtH/Y+Xvsscf07LPP6m9/+5sk6dlnn9V9990nh8OhhIQESVJJSYnefPNN7d27N+jzNjQ0yG63y+l0Kjk5OSx1R3TwNXi2cHCaqo6cVE5qN0IKAERQsPfviI1RcTqd6tWrl/vr8vJyFRYWukOKJBUVFWnfvn2qr6/3e57Tp0+roaHB4wG0x9/gWUkqGNSbkAIAFhWRoLJ//349/fTT+sEPfuAuczgcSk9P9zjO9bXD4fB7rtLSUtntdvcjKysrPJVGVGHwLAB0Th0KKiUlJbLZbAEfbbttDh48qKlTp+raa6/VrFmzzrvC8+bNk9PpdD9qamrO+5yIfgyeBYDOqUMLvs2dO1c333xzwGMGDhzo/vehQ4c0YcIEXX755V6DZDMyMlRXV+dR5vo6IyPD7/kTExOVmJjYkWoDyrQnqXR6nuYv36WzhsHgWQDoJDoUVNLS0pSWlhbUsQcPHtSECRM0evRovfDCC4qL82y8KSgo0H333aempiZ16dJFkrR69WoNGTJEPXv27Ei1gKDMGJvN4FkA6GTCMkbl4MGDuvLKK5Wdna1f/epXOnz4sBwOh8fYk+uvv14JCQmaOXOmdu/erSVLlug3v/mN5syZE44qAZJaWlYYPAsAnUdY9vpZvXq19u/fr/3796t///4ez7lmQ9vtdq1atUqzZ8/W6NGjlZqaqgceeEC33nprOKoEAAA6oYitoxIurKMCAEDnY7l1VAAAADqKoAIAACyLoAIAACyLoAIAACwrLLN+AACINlOffF+f1H2uwek9tPKufzG7OjGDFhUAANqRU7JCe+s+V7OkvXWfK6dkhdlVihkEFQAAApj65PsdKkdoEVQAAAjgk7rPO1SO0CKoAAAQwOD0Hh0qR2gRVAAACMDfwFkG1EYGQQUAgHZULZimoek9FCdpaHoPVS2YZnaVYgbTkwEACAItKOagRQUAAAuqdTZqQ+UR1Tobza6KqWhRAQDAYpZsqta85TvVbEhxNql0ep5mjM02u1qmoEUFAAALqXU2ukOKJDUb0vzlu2K2ZYWgAgCAhRw4csIdUlzOGoaqjpw0p0ImI6gAAGAhuandFWfzLIu32ZST2s2cCpmMoAIAgIVk2pNUOj1P8baWtBJvs+nR6cOVaU8yuWbmYDAtAAAWM2NstgoHp6nqyEnlpHaL2ZAiEVQQBWqdjTpw5IRyU7vH9C8zgOiSaU/iM00EFXRyTOEDgOjGGBV0WkzhA2CG21+u0IiHVur2lyvMrkpMIKig02IKH4BIyy1Zobd3OdRw6qze3uVQbskKs6sU9Qgq6LSYwgcgkm5/uUJt/jaS8c9yhA9BBZ0WU/gARNK6/Yc7VI7QYDAtOjWm8AGIlMKvpOntXQ6f5R3FbMXg2QzDaNuS1ak0NDTIbrfL6XQqOTnZ7OoAAKJYbskKj+4fm6QDC6Z16BzMVmwR7P2brh8AAIJ0YME0fWN4hpK7xusbwzM6HFLam61Y62zUhsojzF5sha4fAAA64LffH33O3xtotuK6Tw7T0uIDLSoIG/4yAABP/mYrdkuIU8kyz5aWkuU7+fwUQQVhsmRTtcYvWKPrF2/U+AVrtGRTtdlVAgDT+ZutWFPf6D312ZC2fFof+UpaDF0/CDl/fbCFg9MY3Q4g5vmarfin7Qd9Htu5p7uEBkEFIReoD5agAgDeGw6Oyeklm+Q1o2h0Ts9IV81y6PpByLFiLAB0TKY9SQuK89w35ThJC4rz+ONOtKggDFx9sPOX79JZw2DFWAAIAgtY+kZQQVh05Bdue029Pqo6qktzemlkFs2cAGJX2y4hEFQQRsH8ws19fZuWbflyEFlxfj89ft2oMNcMANBZMEYFptleU+8RUiRp2ZaD2l7DdDwAQAuCCkzzUdVRn+WbqwgqAIAWBBWY5tKcXj7LxzAdD0CUWbyuUt9etF6L11WaXZVOhzEqMM3IrJ4qzu/nNUaFAbUAokn+I6t09ESTJGlrjVPPvl+pLfdPMblWnQdBBaZ6/LpRurFggDZX1WtMTk9CCoCosnhdpTukuBw90aTF6yo1q3CQSbXqXOj6gelGZvXUzCsGElIARJ13dtb6LF+5yxHhmnReBBUAAMLE3xINTV80a/Qjq3TP69siW6EOqnU2akPlEVN3cabrBwCAMKh1Nmrlbt8tJzsONUiSXt9yUMu2HlRl6bRIVi0oSzZVuzeYjbNJpdPzNGNsdsTrQYsKAABh4GuDVl/OGrJcy0qts9EdUiSp2ZDmL99lSssKQQUAgDDwtUGrP2v2fRbeynSQr5B11jBUdeRkxOtCUAEAIAxcG7QGY+KQPmGuTcf4ClnxNptyUrtFvC5hDyqnT5/WqFGjZLPZtG3bNo/nduzYoSuuuEJdu3ZVVlaWFi5cGO7qAAAQMTPGZiund+A9z+Jt0kKL7XHmClnxtpa0Em+z6dHpw03ZMDHsg2nvuece9e3bV9u3b/cob2ho0JQpUzR58mQ999xz2rlzp/793/9dKSkpuvXWW8NdLQAAIuKbI/rq6fe8V6Tt2kX617x+lgspLjPGZqtwcJqqjpxUTmo303Z1DmtQeffdd7Vq1SotW7ZM7777rsdzr7zyis6cOaPf//73SkhI0MUXX6xt27bpiSeeIKgAAKLG3KKh+v2HVTpx5qy7rHtCvHb/bKqJtQpOpj3JtIDiEraun7q6Os2aNUv/8z//o27dvPu0ysvLVVhYqISEBHdZUVGR9u3bp/p6/5vSnT59Wg0NDR4PAACsbPfPpuqOCYM0uE933TFhUKcIKVYRlqBiGIZuvvlm/fCHP9SYMWN8HuNwOJSenu5R5vra4fC/Yl9paansdrv7kZWVFbqKAwAQJnOLhmrVnCs1t2io2VXpVDoUVEpKSmSz2QI+9u7dq6efflrHjx/XvHnzQl7hefPmyel0uh81NTUhfw0AAGANHRqjMnfuXN18880Bjxk4cKDWrFmj8vJyJSYmejw3ZswY3XDDDXrppZeUkZGhuro6j+ddX2dkZPg9f2Jiotd5AQBAaJTtcWjN3s80cWgfTRrm/34cKR0KKmlpaUpLS2v3uKeeeko///nP3V8fOnRIRUVFWrJkicaNGydJKigo0H333aempiZ16dJFkrR69WoNGTJEPXuyOR0AAJE2/ZkPtaX6mCTplY01ys9O0fLbxptap7CMUcnOztbw4cPdj8GDB0uSBg0apP79+0uSrr/+eiUkJGjmzJnavXu3lixZot/85jeaM2dOOKoEAIAlbK+p1+IPKrW9xv/EETOU7XG4Q4rLlupjKttj7k7Ppm1KaLfbtWrVKs2ePVujR49WamqqHnjgAaYmAwCi1tzXt2nZloPur4vz++lxi6yjsmav72X81+47bGoXUESCSk5OjgzDe2emESNG6IMPPohEFQAAMNX2mnqPkCJJy7Yc1I0FAzQyy/whDxOH9tErG70nqFw5pP0hH+HEXj8AAETAR1VHfZZvrrJGF9CkYRnKz07xKMvPTjF9QK1pXT8AAMSSS3N6+Swfk2N+a4rL8tvGq2yPQ2v3HdaVQ9JMDykSQQUAgIgYmdVTxfn9vMaoWKHbp7VJwzIsEVBcCCoAAETI49eN0o0FA7S5ql5jcnpaLqRYEUEFAIAIGplFQOkIBtMCABBjyvY4dN8bO0xfIyUYtKgAABBDrLj6bCC0qAAAECOsuvpsIAQVAABiRKDVZ62KoAIAQIyYOLSPz3KzV58NhKACAECMsOrqs4EwmBYAgBhixdVnAyGoAAAQY6y2+mwgdP0AAADLIqgAAADLIqgAAADLIqgAAADLIqgAAADLIqgAAADLIqgAAADLIqgAAADLIqgAAADLIqgAAADLIqgAAADL6vR7/RiGIUlqaGgwuSYAACBYrvu26z7uT6cPKsePH5ckZWVlmVwTAADQUcePH5fdbvf7vM1oL8pYXHNzsw4dOqQLL7xQNpvN7OqEXUNDg7KyslRTU6Pk5GSzq2NpXKvgca2Cx7UKHtcqeLF4rQzD0PHjx9W3b1/FxfkfidLpW1Ti4uLUv39/s6sRccnJyTHzZj5fXKvgca2Cx7UKHtcqeLF2rQK1pLgwmBYAAFgWQQUAAFgWQaWTSUxM1IMPPqjExESzq2J5XKvgca2Cx7UKHtcqeFwr/zr9YFoAABC9aFEBAACWRVABAACWRVABAACWRVABAACWRVCxqF/84he6/PLL1a1bN6WkpPg8prq6WtOmTVO3bt3Up08f3X333friiy88jlm7dq3y8/OVmJior3zlK3rxxRfDX3kLyMnJkc1m83gsWLDA45gdO3boiiuuUNeuXZWVlaWFCxeaVFvzLVq0SDk5OeratavGjRunjz76yOwqme6hhx7yeg8NHTrU/fypU6c0e/Zs9e7dWz169FBxcbHq6upMrHHkrFu3Tt/85jfVt29f2Ww2vfnmmx7PG4ahBx54QJmZmUpKStLkyZP117/+1eOYo0eP6oYbblBycrJSUlI0c+ZMff755xH8KSKjvWt18803e73Ppk6d6nFMrFwrfwgqFnXmzBlde+21+tGPfuTz+bNnz2ratGk6c+aMNmzYoJdeekkvvviiHnjgAfcxBw4c0LRp0zRhwgRt27ZNd955p/7jP/5Df/7znyP1Y5jqZz/7mWpra92PO+64w/1cQ0ODpkyZogEDBqiiokKPPfaYHnroIT3//PMm1tgcS5Ys0Zw5c/Tggw9qy5YtGjlypIqKivTZZ5+ZXTXTXXzxxR7vofXr17ufu+uuu/SnP/1JS5cu1fvvv69Dhw5p+vTpJtY2ck6cOKGRI0dq0aJFPp9fuHChnnrqKT333HPauHGjunfvrqKiIp06dcp9zA033KDdu3dr9erVevvtt7Vu3TrdeuutkfoRIqa9ayVJU6dO9Xifvfrqqx7Px8q18suApb3wwguG3W73Kn/nnXeMuLg4w+FwuMueffZZIzk52Th9+rRhGIZxzz33GBdffLHH982YMcMoKioKa52tYMCAAcaTTz7p9/lnnnnG6Nmzp/taGYZh3HvvvcaQIUMiUDtrufTSS43Zs2e7vz579qzRt29fo7S01MRame/BBx80Ro4c6fO5Y8eOGV26dDGWLl3qLtuzZ48hySgvL49QDa1BkvHGG2+4v25ubjYyMjKMxx57zF127NgxIzEx0Xj11VcNwzCMjz/+2JBkbNq0yX3Mu+++a9hsNuPgwYMRq3uktb1WhmEYN910k3HNNdf4/Z5YvVat0aLSSZWXlysvL0/p6enusqKiIjU0NGj37t3uYyZPnuzxfUVFRSovL49oXc2yYMEC9e7dW5dccokee+wxj26x8vJyFRYWKiEhwV1WVFSkffv2qb6+3ozqmuLMmTOqqKjweJ/ExcVp8uTJMfM+CeSvf/2r+vbtq4EDB+qGG25QdXW1JKmiokJNTU0e123o0KHKzs6O+et24MABORwOj2tjt9s1btw497UpLy9XSkqKxowZ4z5m8uTJiouL08aNGyNeZ7OtXbtWffr00ZAhQ/SjH/1I//jHP9zPca2iYFPCWOVwODxCiiT31w6HI+AxDQ0NamxsVFJSUmQqa4If//jHys/PV69evbRhwwbNmzdPtbW1euKJJyS1XJvc3FyP72l9/Xr27BnxOpvhyJEjOnv2rM/3yd69e02qlTWMGzdOL774ooYMGaLa2lo9/PDDuuKKK7Rr1y45HA4lJCR4jR9LT093//7FKtfP7+s91fqzqU+fPh7PX3DBBerVq1fMXb+pU6dq+vTpys3NVWVlpebPn6+rrrpK5eXlio+P51qJoBJRJSUl+uUvfxnwmD179ngM2MOXOnL95syZ4y4bMWKEEhIS9IMf/EClpaUsUY2gXHXVVe5/jxgxQuPGjdOAAQP0+uuvR3XIR2R997vfdf87Ly9PI0aM0KBBg7R27VpNmjTJxJpZB0ElgubOnaubb7454DEDBw4M6lwZGRleMzNcMw4yMjLc/207C6Gurk7Jycmd8oP2fK7fuHHj9MUXX6iqqkpDhgzxe22kL69fLEhNTVV8fLzPaxFL1yEYKSkpGjx4sPbv36+vf/3rOnPmjI4dO+bRqsJ1+/L3p66uTpmZme7yuro6jRo1yn1M28HaX3zxhY4ePRrz12/gwIFKTU3V/v37NWnSJK6VmPUTUWlpaRo6dGjAR+sxE4EUFBRo586dHm/g1atXKzk5WRdddJH7mLKyMo/vW716tQoKCkL3Q0XQ+Vy/bdu2KS4uzt2EWlBQoHXr1qmpqcl9zOrVqzVkyJCY6faRpISEBI0ePdrjfdLc3KyysrJO+z4Jl88//1yVlZXKzMzU6NGj1aVLF4/rtm/fPlVXV8f8dcvNzVVGRobHtWloaNDGjRvd16agoEDHjh1TRUWF+5g1a9aoublZ48aNi3idreTvf/+7/vGPf7hDHtdKzPqxqk8//dTYunWr8fDDDxs9evQwtm7damzdutU4fvy4YRiG8cUXXxjDhw83pkyZYmzbts1YuXKlkZaWZsybN899jr/97W9Gt27djLvvvtvYs2ePsWjRIiM+Pt5YuXKlWT9WRGzYsMF48sknjW3bthmVlZXGyy+/bKSlpRk33nij+5hjx44Z6enpxr/9278Zu3btMl577TWjW7duxu9+9zsTa26O1157zUhMTDRefPFF4+OPPzZuvfVWIyUlxWNGWSyaO3eusXbtWuPAgQPGhx9+aEyePNlITU01PvvsM8MwDOOHP/yhkZ2dbaxZs8bYvHmzUVBQYBQUFJhc68g4fvy4+zNJkvHEE08YW7duNT799FPDMAxjwYIFRkpKivHWW28ZO3bsMK655hojNzfXaGxsdJ9j6tSpxiWXXGJs3LjRWL9+vfHVr37V+N73vmfWjxQ2ga7V8ePHjZ/+9KdGeXm5ceDAAeP//u//jPz8fOOrX/2qcerUKfc5YuVa+UNQsaibbrrJkOT1eO+999zHVFVVGVdddZWRlJRkpKamGnPnzjWampo8zvPee+8Zo0aNMhISEoyBAwcaL7zwQmR/EBNUVFQY48aNM+x2u9G1a1dj2LBhxqOPPurxi28YhrF9+3bja1/7mpGYmGj069fPWLBggUk1Nt/TTz9tZGdnGwkJCcall15q/OUvfzG7SqabMWOGkZmZaSQkJBj9+vUzZsyYYezfv9/9fGNjo3HbbbcZPXv2NLp162Z8+9vfNmpra02sceS89957Pj+fbrrpJsMwWqYo33///UZ6erqRmJhoTJo0ydi3b5/HOf7xj38Y3/ve94wePXoYycnJxi233OL+QyyaBLpWJ0+eNKZMmWKkpaUZXbp0MQYMGGDMmjXL64+EWLlW/tgMwzAi3owDAAAQBMaoAAAAyyKoAAAAyyKoAAAAyyKoAAAAyyKoAAAAyyKoAAAAyyKoAAAAyyKoAAAAyyKoAAAAyyKoAAAAyyKoAAAAyyKoAAAAy/r/nN3ErroJikgAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ - "len(locations)\n", - "locations\n", - "x=[]\n", - "y=[]\n", - "for l in locations:\n", - " if l is not None:\n", - " x.append(l[0])\n", - " y.append(l[1])\n", - "plt.plot(x,y,\".\")" + "x=data[\"longitude\"]\n", + "y=data[\"latitude\"]\n", + "plt.plot(x,y,\".\");" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 20, "id": "66ce4e4a-7006-411f-abd0-ee94d7cf99b3", "metadata": {}, "outputs": [], @@ -3624,16 +2579,14 @@ " continue\n", " values = values.union([x.strip() for x in set(val.split(\",\"))])\n", " attributes = attributes.union(values)\n", - " \n", - " \n", - " row_attrs = [set() for _ in range(len(df))] # get the attributes specific to each row\n", + " row_attrs = [set() for _ in range(len(df))] # get the attributes specific to each row\n", " for col in cols:\n", " for i, row in enumerate(df[col]):\n", " if type(row) != float:\n", " row_attrs[i] = row_attrs[i].union([x.strip() for x in row.split(\",\")])\n", - "\n", " for attr in attributes: # Add attributes rows\n", " df[attr] = list(attr in row_attrs[i] for i in range(len(df[col])))\n", + " df=df.copy()\n", " for col in cols:\n", " del df[col]\n", "\n", @@ -3642,7 +2595,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 21, "id": "fda6aaad-7b1e-4daa-8d28-cd049df9cec2", "metadata": {}, "outputs": [], @@ -3650,6 +2603,391 @@ "data_features=filter_df(data)" ] }, + { + "cell_type": "code", + "execution_count": 22, + "id": "99d028a8-326d-4fbd-ba01-19a8ab4b4557", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
cheeseregioncolorvegetarianveganlocationlatitudelongitudeLithuania...Italian CheeseScotlandMexicoburnt caramellacticRacletterindlesswater buffaloMauritaniaBelgium
0AarewasseryellowFalseFalse, Switzerland46.7985628.231974FalseFalse...FalseFalseFalseFalseFalseFalseFalseFalseFalseFalse
1Abbaye de BellocPays BasqueyellowTrueFalsePays Basque, France47.6867907.392763FalseFalse...FalseFalseFalseTrueFalseFalseFalseFalseFalseFalse
2Abbaye de BelvalivoryFalseFalse, France46.6033541.888334FalseFalse...FalseFalseFalseFalseFalseFalseFalseFalseFalseFalse
3Abbaye de CiteauxBurgundywhiteFalseFalseBurgundy, France47.2780874.222486FalseFalse...FalseFalseFalseFalseFalseFalseFalseFalseFalseFalse
4Abbaye de TamiéSavoiewhiteFalseFalseSavoie, France45.4948956.384660FalseFalse...FalseFalseFalseFalseFalseFalseFalseFalseFalseFalse
..................................................................
1182SveciaostLow-laying regionspale yellowFalseFalseLow-laying regions, Sweden59.67497114.520858FalseFalse...FalseFalseFalseFalseFalseFalseTrueFalseFalseFalse
1183SwagSouth AustraliawhiteTrueFalseSouth Australia, Australia-30.534367135.630121FalseFalse...FalseFalseFalseFalseFalseFalseFalseFalseFalseFalse
1184SwaledaleSwaledale, North YorkshireyellowTrueFalseSwaledale, North Yorkshire, England54.382993-1.984136FalseFalse...FalseFalseFalseFalseFalseFalseFalseFalseFalseFalse
1185Sweet Style SwissNaNFalseFalse, Switzerland46.7985628.231974FalseFalse...FalseFalseFalseFalseFalseFalseFalseFalseFalseFalse
1186Swiss cheesepale yellowTrueFalse, United States39.783730-100.445882FalseFalse...FalseFalseFalseFalseFalseFalseTrueFalseFalseFalse
\n", + "

1140 rows × 204 columns

\n", + "
" + ], + "text/plain": [ + " cheese region color vegetarian \\\n", + "0 Aarewasser yellow False \n", + "1 Abbaye de Belloc Pays Basque yellow True \n", + "2 Abbaye de Belval ivory False \n", + "3 Abbaye de Citeaux Burgundy white False \n", + "4 Abbaye de Tamié Savoie white False \n", + "... ... ... ... ... \n", + "1182 Sveciaost Low-laying regions pale yellow False \n", + "1183 Swag South Australia white True \n", + "1184 Swaledale Swaledale, North Yorkshire yellow True \n", + "1185 Sweet Style Swiss NaN False \n", + "1186 Swiss cheese pale yellow True \n", + "\n", + " vegan location latitude longitude \\\n", + "0 False , Switzerland 46.798562 8.231974 \n", + "1 False Pays Basque, France 47.686790 7.392763 \n", + "2 False , France 46.603354 1.888334 \n", + "3 False Burgundy, France 47.278087 4.222486 \n", + "4 False Savoie, France 45.494895 6.384660 \n", + "... ... ... ... ... \n", + "1182 False Low-laying regions, Sweden 59.674971 14.520858 \n", + "1183 False South Australia, Australia -30.534367 135.630121 \n", + "1184 False Swaledale, North Yorkshire, England 54.382993 -1.984136 \n", + "1185 False , Switzerland 46.798562 8.231974 \n", + "1186 False , United States 39.783730 -100.445882 \n", + "\n", + " Lithuania ... Italian Cheese Scotland Mexico burnt caramel \\\n", + "0 False False ... False False False False \n", + "1 False False ... False False False True \n", + "2 False False ... False False False False \n", + "3 False False ... False False False False \n", + "4 False False ... False False False False \n", + "... ... ... ... ... ... ... ... \n", + "1182 False False ... False False False False \n", + "1183 False False ... False False False False \n", + "1184 False False ... False False False False \n", + "1185 False False ... False False False False \n", + "1186 False False ... False False False False \n", + "\n", + " lactic Raclette rindless water buffalo Mauritania Belgium \n", + "0 False False False False False False \n", + "1 False False False False False False \n", + "2 False False False False False False \n", + "3 False False False False False False \n", + "4 False False False False False False \n", + "... ... ... ... ... ... ... \n", + "1182 False False True False False False \n", + "1183 False False False False False False \n", + "1184 False False False False False False \n", + "1185 False False False False False False \n", + "1186 False False True False False False \n", + "\n", + "[1140 rows x 204 columns]" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data_features" + ] + }, { "cell_type": "markdown", "id": "a1b022a3-a2f9-4e39-9e79-48ae9f6adca5", @@ -3660,7 +2998,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 23, "id": "94bcde38-784b-41d9-89b0-3e2e17aa2979", "metadata": {}, "outputs": [], @@ -3670,7 +3008,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 24, "id": "7b2b9d3e-d7da-4f43-9e1c-4e62e837ed0b", "metadata": {}, "outputs": [], @@ -3678,26 +3016,6 @@ "c=tree.DecisionTreeClassifier()" ] }, - { - "cell_type": "code", - "execution_count": null, - "id": "0b52b082-0554-45f2-9eff-e6a3ba6a8d08", - "metadata": {}, - "outputs": [], - "source": [ - "c.fit(" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "6d0b0d25-3476-4fbb-84c7-008437e87903", - "metadata": {}, - "outputs": [], - "source": [ - "data[[\"country\",\"region\"]]" - ] - }, { "cell_type": "markdown", "id": "100a7c2e-2d24-4814-bd68-4b9f6433ce4d", @@ -3711,10 +3029,385 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 27, "id": "24e7ff6e-c308-4cc8-aeac-eeb372f4c479", "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
cheeseregioncolorvegetarianveganlocationlatitudelongitudeLithuania...Italian CheeseScotlandMexicoburnt caramellacticRacletterindlesswater buffaloMauritaniaBelgium
0AarewasseryellowFalseFalse, Switzerland46.7985628.231974FalseFalse...FalseFalseFalseFalseFalseFalseFalseFalseFalseFalse
1Abbaye de BellocPays BasqueyellowTrueFalsePays Basque, France47.6867907.392763FalseFalse...FalseFalseFalseTrueFalseFalseFalseFalseFalseFalse
2Abbaye de BelvalivoryFalseFalse, France46.6033541.888334FalseFalse...FalseFalseFalseFalseFalseFalseFalseFalseFalseFalse
3Abbaye de CiteauxBurgundywhiteFalseFalseBurgundy, France47.2780874.222486FalseFalse...FalseFalseFalseFalseFalseFalseFalseFalseFalseFalse
4Abbaye de TamiéSavoiewhiteFalseFalseSavoie, France45.4948956.384660FalseFalse...FalseFalseFalseFalseFalseFalseFalseFalseFalseFalse
..................................................................
1182SveciaostLow-laying regionspale yellowFalseFalseLow-laying regions, Sweden59.67497114.520858FalseFalse...FalseFalseFalseFalseFalseFalseTrueFalseFalseFalse
1183SwagSouth AustraliawhiteTrueFalseSouth Australia, Australia-30.534367135.630121FalseFalse...FalseFalseFalseFalseFalseFalseFalseFalseFalseFalse
1184SwaledaleSwaledale, North YorkshireyellowTrueFalseSwaledale, North Yorkshire, England54.382993-1.984136FalseFalse...FalseFalseFalseFalseFalseFalseFalseFalseFalseFalse
1185Sweet Style SwissNaNFalseFalse, Switzerland46.7985628.231974FalseFalse...FalseFalseFalseFalseFalseFalseFalseFalseFalseFalse
1186Swiss cheesepale yellowTrueFalse, United States39.783730-100.445882FalseFalse...FalseFalseFalseFalseFalseFalseTrueFalseFalseFalse
\n", + "

1140 rows × 204 columns

\n", + "
" + ], + "text/plain": [ + " cheese region color vegetarian \\\n", + "0 Aarewasser yellow False \n", + "1 Abbaye de Belloc Pays Basque yellow True \n", + "2 Abbaye de Belval ivory False \n", + "3 Abbaye de Citeaux Burgundy white False \n", + "4 Abbaye de Tamié Savoie white False \n", + "... ... ... ... ... \n", + "1182 Sveciaost Low-laying regions pale yellow False \n", + "1183 Swag South Australia white True \n", + "1184 Swaledale Swaledale, North Yorkshire yellow True \n", + "1185 Sweet Style Swiss NaN False \n", + "1186 Swiss cheese pale yellow True \n", + "\n", + " vegan location latitude longitude \\\n", + "0 False , Switzerland 46.798562 8.231974 \n", + "1 False Pays Basque, France 47.686790 7.392763 \n", + "2 False , France 46.603354 1.888334 \n", + "3 False Burgundy, France 47.278087 4.222486 \n", + "4 False Savoie, France 45.494895 6.384660 \n", + "... ... ... ... ... \n", + "1182 False Low-laying regions, Sweden 59.674971 14.520858 \n", + "1183 False South Australia, Australia -30.534367 135.630121 \n", + "1184 False Swaledale, North Yorkshire, England 54.382993 -1.984136 \n", + "1185 False , Switzerland 46.798562 8.231974 \n", + "1186 False , United States 39.783730 -100.445882 \n", + "\n", + " Lithuania ... Italian Cheese Scotland Mexico burnt caramel \\\n", + "0 False False ... False False False False \n", + "1 False False ... False False False True \n", + "2 False False ... False False False False \n", + "3 False False ... False False False False \n", + "4 False False ... False False False False \n", + "... ... ... ... ... ... ... ... \n", + "1182 False False ... False False False False \n", + "1183 False False ... False False False False \n", + "1184 False False ... False False False False \n", + "1185 False False ... False False False False \n", + "1186 False False ... False False False False \n", + "\n", + " lactic Raclette rindless water buffalo Mauritania Belgium \n", + "0 False False False False False False \n", + "1 False False False False False False \n", + "2 False False False False False False \n", + "3 False False False False False False \n", + "4 False False False False False False \n", + "... ... ... ... ... ... ... \n", + "1182 False False True False False False \n", + "1183 False False False False False False \n", + "1184 False False False False False False \n", + "1185 False False False False False False \n", + "1186 False False True False False False \n", + "\n", + "[1140 rows x 204 columns]" + ] + }, + "execution_count": 27, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "data_features" ] @@ -3745,10 +3438,65 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 28, "id": "42a1e4ed-9a1e-41f8-a322-b5d2de68d24a", "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
cheesemilkcountryregionfamilytypetexturerindcolorflavoraromavegetarianveganlocationlatitudelongitude
\n", + "
" + ], + "text/plain": [ + "Empty DataFrame\n", + "Columns: [cheese, milk, country, region, family, type, texture, rind, color, flavor, aroma, vegetarian, vegan, location, latitude, longitude]\n", + "Index: []" + ] + }, + "execution_count": 28, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "data[pd.isnull(data[\"country\"])&pd.isnull(data[\"region\"])]\n" ] @@ -3763,31 +3511,3117 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 29, "id": "2e6b0dc1-030c-4239-803f-52736a41bcb5", "metadata": {}, "outputs": [], "source": [ - "data" + "data_features_only=data_features.drop(columns=[\"vegetarian\",\"vegan\",\"cheese\",\"region\",\"color\",\"location\",\"latitude\",\"longitude\"])" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 30, "id": "23b75579-95bb-4889-928f-9c3c1309a18a", "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "196" + ] + }, + "execution_count": 30, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ - "apriori(data)" + "data_features_only.shape[1]" + ] + }, + { + "cell_type": "markdown", + "id": "b76e8b2f-2efc-43f7-9aa7-fffb960313ad", + "metadata": {}, + "source": [ + "We have $196$ features in our data, that is very big compared to the number of rows of our data. So, we choose a min_support of $0.1$ during the apriori algorithm for pattern mining. " ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 42, + "id": "e7113235-7546-4c71-9b34-181472466d20", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
supportitemsets
00.188596(hard)
10.328947(soft)
20.108772(washed)
30.298246(smooth)
40.221053(firm)
50.135088(spicy)
60.075439(Cheddar)
70.097368(salty)
80.079825(bloomy)
90.108772(soft-ripened)
100.195614(semi-hard)
110.655263(cow)
120.560526(creamy)
130.088596(earthy)
140.148246(France)
150.060526(savory)
160.055263(herbaceous)
170.224561(goat)
180.078070(Blue)
190.098246(aromatic)
200.079825(dense)
210.072807(England)
220.070175(blue-veined)
230.057018(Canada)
240.254386(sweet)
250.054386(supple)
260.371053(natural)
270.136842(strong)
280.135088(rich)
290.087719(fruity)
300.135965(tangy)
310.055263(Brie)
320.198246(mild)
330.078070(sharp)
340.267544(United States)
350.066667(full-flavored)
360.188596(crumbly)
370.203509(nutty)
380.058772(fresh soft)
390.067544(grassy)
400.069298(open)
410.123684(Italy)
420.160526(sheep)
430.052632(compact)
440.100877(milky)
450.228947(semi-soft)
460.203509(buttery)
470.064912(acidic)
480.541228(artisan)
490.126316(fresh)
500.089474(rindless)
510.064035(hard, firm)
520.142982(hard, cow)
530.060526(hard, creamy)
540.050877(sweet, hard)
550.103509(hard, natural)
560.084211(hard, crumbly)
570.072807(hard, nutty)
580.110526(hard, artisan)
590.124561(soft, smooth)
600.067544(bloomy, soft)
610.088596(soft, soft-ripened)
620.200000(soft, cow)
630.228070(soft, creamy)
640.092982(soft, France)
650.100877(goat, soft)
660.068421(sweet, soft)
670.073684(natural, soft)
680.071053(mild, soft)
690.068421(United States, soft)
700.085088(buttery, soft)
710.153509(soft, artisan)
720.058772(fresh, soft)
730.084211(washed, cow)
740.060526(washed, creamy)
750.051754(washed, artisan)
760.187719(smooth, cow)
770.193860(smooth, creamy)
780.064912(smooth, France)
790.071930(goat, smooth)
800.086842(sweet, smooth)
810.103509(natural, smooth)
820.069298(mild, smooth)
830.067544(United States, smooth)
840.067544(smooth, nutty)
850.080702(smooth, semi-soft)
860.064912(buttery, smooth)
870.169298(smooth, artisan)
880.069298(semi-hard, firm)
890.143860(firm, cow)
900.074561(firm, creamy)
910.071053(sweet, firm)
920.094737(natural, firm)
930.073684(United States, firm)
940.061404(firm, nutty)
950.135965(firm, artisan)
960.103509(cow, spicy)
970.069298(creamy, spicy)
980.072807(natural, spicy)
990.083333(spicy, artisan)
1000.071053(cow, Cheddar)
1010.050877(Cheddar, artisan)
1020.066667(salty, cow)
1030.052632(salty, artisan)
1040.057895(bloomy, soft-ripened)
1050.057895(bloomy, cow)
1060.066667(bloomy, creamy)
1070.075439(soft-ripened, cow)
1080.084211(creamy, soft-ripened)
1090.143860(semi-hard, cow)
1100.092982(semi-hard, creamy)
1110.057018(semi-hard, sweet)
1120.110526(semi-hard, natural)
1130.066667(semi-hard, United States)
1140.053509(semi-hard, nutty)
1150.122807(semi-hard, artisan)
1160.378070(creamy, cow)
1170.059649(cow, earthy)
1180.086842(France, cow)
1190.063158(Blue, cow)
1200.063158(aromatic, cow)
1210.051754(cow, dense)
1220.057018(England, cow)
1230.057895(blue-veined, cow)
1240.160526(sweet, cow)
1250.250000(natural, cow)
1260.093860(strong, cow)
1270.109649(rich, cow)
1280.070175(fruity, cow)
1290.080702(cow, tangy)
1300.126316(mild, cow)
1310.057895(sharp, cow)
1320.176316(United States, cow)
1330.124561(crumbly, cow)
1340.142105(cow, nutty)
1350.052632(open, cow)
1360.063158(Italy, cow)
1370.064035(milky, cow)
1380.153509(cow, semi-soft)
1390.163158(buttery, cow)
1400.331579(cow, artisan)
1410.063158(fresh, cow)
1420.057018(rindless, cow)
1430.052632(creamy, earthy)
1440.085088(creamy, France)
1450.133333(goat, creamy)
1460.060526(Blue, creamy)
1470.057018(aromatic, creamy)
1480.050877(England, creamy)
1490.056140(blue-veined, creamy)
1500.140351(sweet, creamy)
1510.184211(natural, creamy)
1520.067544(strong, creamy)
1530.089474(creamy, rich)
1540.065789(creamy, tangy)
1550.130702(mild, creamy)
1560.169298(United States, creamy)
1570.075439(creamy, crumbly)
1580.100000(creamy, nutty)
1590.067544(sheep, creamy)
1600.065789(milky, creamy)
1610.151754(creamy, semi-soft)
1620.131579(buttery, creamy)
1630.306140(creamy, artisan)
1640.091228(fresh, creamy)
1650.056140(rindless, creamy)
1660.052632(goat, France)
1670.069298(France, artisan)
1680.050877(goat, sweet)
1690.065789(goat, natural)
1700.051754(goat, mild)
1710.078070(United States, goat)
1720.050000(goat, semi-soft)
1730.128070(goat, artisan)
1740.060526(Blue, blue-veined)
1750.057895(aromatic, artisan)
1760.050877(dense, artisan)
1770.100877(sweet, natural)
1780.057018(mild, sweet)
1790.089474(United States, sweet)
1800.076316(sweet, nutty)
1810.061404(sweet, semi-soft)
1820.060526(sweet, buttery)
1830.151754(sweet, artisan)
1840.056140(natural, strong)
1850.059649(natural, tangy)
1860.077193(mild, natural)
1870.108772(United States, natural)
1880.101754(natural, crumbly)
1890.091228(natural, nutty)
1900.072807(natural, Italy)
1910.074561(sheep, natural)
1920.072807(natural, semi-soft)
1930.063158(buttery, natural)
1940.238596(natural, artisan)
1950.078947(strong, artisan)
1960.059649(United States, rich)
1970.079825(rich, artisan)
1980.053509(fruity, artisan)
1990.065789(United States, tangy)
2000.085965(artisan, tangy)
2010.059649(United States, mild)
2020.106140(mild, artisan)
2030.061404(United States, crumbly)
2040.071930(United States, nutty)
2050.065789(United States, semi-soft)
2060.065789(United States, buttery)
2070.184211(United States, artisan)
2080.051754(crumbly, nutty)
2090.122807(crumbly, artisan)
2100.056140(buttery, nutty)
2110.121053(nutty, artisan)
2120.051754(sheep, Italy)
2130.081579(Italy, artisan)
2140.104386(sheep, artisan)
2150.054386(milky, artisan)
2160.051754(buttery, semi-soft)
2170.126316(semi-soft, artisan)
2180.103509(buttery, artisan)
2190.071930(fresh, artisan)
2200.052632(hard, creamy, cow)
2210.078947(hard, natural, cow)
2220.065789(hard, crumbly, cow)
2230.055263(hard, cow, nutty)
2240.082456(hard, cow, artisan)
2250.051754(hard, natural, crumbly)
2260.069298(hard, natural, artisan)
2270.076316(soft, smooth, cow)
2280.086842(soft, smooth, creamy)
2290.069298(soft, smooth, artisan)
2300.054386(bloomy, soft, cow)
2310.057018(bloomy, soft, creamy)
2320.066667(soft-ripened, soft, cow)
2330.070175(soft, creamy, soft-ripened)
2340.145614(soft, creamy, cow)
2350.068421(buttery, soft, cow)
2360.085088(soft, cow, artisan)
2370.055263(soft, creamy, France)
2380.064912(goat, soft, creamy)
2390.051754(mild, soft, creamy)
2400.050000(United States, soft, creamy)
2410.068421(buttery, soft, creamy)
2420.106140(soft, creamy, artisan)
2430.053509(goat, soft, artisan)
2440.130702(creamy, smooth, cow)
2450.051754(sweet, smooth, cow)
2460.064035(natural, smooth, cow)
2470.055263(smooth, cow, semi-soft)
2480.052632(buttery, smooth, cow)
2490.099123(smooth, cow, artisan)
2500.057895(sweet, smooth, creamy)
2510.059649(natural, smooth, creamy)
2520.050877(mild, smooth, creamy)
2530.051754(United States, smooth, creamy)
2540.057018(smooth, creamy, semi-soft)
2550.108772(smooth, creamy, artisan)
2560.054386(sweet, smooth, artisan)
2570.073684(natural, smooth, artisan)
2580.052632(semi-hard, firm, cow)
2590.067544(natural, firm, cow)
2600.077193(firm, cow, artisan)
2610.052632(firm, creamy, artisan)
2620.058772(natural, firm, artisan)
2630.055263(United States, firm, artisan)
2640.052632(cow, creamy, spicy)
2650.057018(cow, natural, spicy)
2660.059649(cow, spicy, artisan)
2670.050000(natural, spicy, artisan)
2680.050877(bloomy, creamy, cow)
2690.062281(soft-ripened, creamy, cow)
2700.073684(semi-hard, creamy, cow)
2710.079825(semi-hard, natural, cow)
2720.050000(semi-hard, United States, cow)
2730.085088(semi-hard, cow, artisan)
2740.061404(semi-hard, natural, creamy)
2750.064035(semi-hard, creamy, artisan)
2760.077193(semi-hard, natural, artisan)
2770.052632(France, creamy, cow)
2780.050877(Blue, creamy, cow)
2790.091228(sweet, creamy, cow)
2800.135088(natural, creamy, cow)
2810.054386(creamy, strong, cow)
2820.069298(rich, creamy, cow)
2830.081579(mild, creamy, cow)
2840.107018(United States, creamy, cow)
2850.074561(cow, creamy, nutty)
2860.104386(creamy, cow, semi-soft)
2870.107895(buttery, creamy, cow)
2880.192982(creamy, cow, artisan)
2890.050000(Blue, blue-veined, cow)
2900.065789(sweet, natural, cow)
2910.064912(United States, sweet, cow)
2920.054386(sweet, cow, nutty)
2930.086842(sweet, cow, artisan)
2940.085965(United States, natural, cow)
2950.069298(natural, crumbly, cow)
2960.068421(cow, natural, nutty)
2970.050000(natural, cow, semi-soft)
2980.050000(buttery, natural, cow)
2990.151754(natural, cow, artisan)
3000.050877(strong, cow, artisan)
3010.059649(rich, cow, artisan)
3020.055263(mild, cow, artisan)
3030.054386(United States, cow, nutty)
3040.053509(United States, buttery, cow)
3050.120175(United States, cow, artisan)
3060.080702(crumbly, cow, artisan)
3070.081579(cow, nutty, artisan)
3080.072807(semi-soft, cow, artisan)
3090.083333(buttery, cow, artisan)
3100.055263(United States, creamy, goat)
3110.079825(goat, creamy, artisan)
3120.052632(United States, sweet, creamy)
3130.083333(sweet, creamy, artisan)
3140.060526(United States, natural, creamy)
3150.050877(natural, creamy, semi-soft)
3160.121053(natural, creamy, artisan)
3170.053509(creamy, rich, artisan)
3180.064912(mild, creamy, artisan)
3190.050000(United States, creamy, semi-soft)
3200.113158(United States, creamy, artisan)
3210.060526(creamy, nutty, artisan)
3220.086842(semi-soft, creamy, artisan)
3230.066667(buttery, creamy, artisan)
3240.071930(sweet, natural, artisan)
3250.059649(United States, sweet, artisan)
3260.050000(sweet, nutty, artisan)
3270.050877(mild, natural, artisan)
3280.081579(United States, natural, artisan)
3290.069298(natural, crumbly, artisan)
3300.064912(natural, nutty, artisan)
3310.054386(natural, Italy, artisan)
3320.059649(sheep, natural, artisan)
3330.050000(United States, crumbly, artisan)
3340.054386(United States, nutty, artisan)
3350.054386(hard, natural, cow, artisan)
3360.057895(creamy, soft, smooth, cow)
3370.057018(soft, creamy, cow, soft-ripened)
3380.056140(buttery, soft, creamy, cow)
3390.059649(soft, creamy, cow, artisan)
3400.070175(creamy, smooth, cow, artisan)
3410.050000(semi-hard, natural, creamy, cow)
3420.050877(semi-hard, natural, cow, artisan)
3430.050000(sweet, creamy, cow, artisan)
3440.051754(United States, natural, creamy, cow)
3450.085088(natural, creamy, cow, artisan)
3460.069298(United States, creamy, cow, artisan)
3470.054386(semi-soft, creamy, cow, artisan)
3480.055263(buttery, creamy, cow, artisan)
3490.064035(United States, natural, cow, artisan)
3500.050000(cow, natural, nutty, artisan)
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "frequent_itemsets=apriori(data_features_only,min_support=.05, use_colnames=True)\n", + "display(HTML(frequent_itemsets.to_html()))" + ] + }, + { + "cell_type": "code", + "execution_count": 41, "id": "61959c04-61bf-464a-89ca-72ec4782f927", "metadata": {}, - "outputs": [], - "source": [] + "outputs": [ + { + "data": { + "text/html": [ + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
antecedentsconsequentsantecedent supportconsequent supportsupportconfidenceliftrepresentativityleverageconvictionzhangs_metricjaccardcertaintykulczynski
0(hard)(cow)0.1885960.6552630.1429820.7581401.1570001.00.0194021.4253540.1672360.2040050.2984200.488173
1(hard)(natural)0.1885960.3710530.1035090.5488371.4791361.00.0335301.3940590.3992210.2269230.2826700.413899
2(hard)(artisan)0.1885960.5412280.1105260.5860471.0828091.00.0084531.1082690.0942510.1784700.0976920.395130
3(soft)(cow)0.3289470.6552630.2000000.6080000.9278711.0-0.0155470.879431-0.1038150.255034-0.1370990.456610
4(soft)(creamy)0.3289470.5605260.2280700.6933331.2369331.00.0436871.4330660.2854450.3448280.3021960.550110
5(smooth)(cow)0.2982460.6552630.1877190.6294120.9605481.0-0.0077100.930242-0.0552920.245132-0.0749890.457946
6(smooth)(creamy)0.2982460.5605260.1938600.6500001.1596241.00.0266851.2556390.1961540.2915570.2035930.497926
7(smooth)(artisan)0.2982460.5412280.1692980.5676471.0488131.00.0078791.0611050.0663210.2526180.0575860.440225
8(firm)(cow)0.2210530.6552630.1438600.6507940.9931791.0-0.0009880.987201-0.0087400.196407-0.0129650.435169
9(firm)(artisan)0.2210530.5412280.1359650.6150791.1364511.00.0163251.1918610.1541410.2170870.1609760.433147
10(spicy)(cow)0.1350880.6552630.1035090.7662341.1693531.00.0149911.4747080.1674460.1507020.3218990.462099
11(semi-hard)(cow)0.1956140.6552630.1438600.7354261.1223371.00.0156811.3029880.1355090.2034740.2325330.477485
12(semi-hard)(natural)0.1956140.3710530.1105260.5650221.5227551.00.0379431.4459310.4267800.2423080.3084040.431447
13(semi-hard)(artisan)0.1956140.5412280.1228070.6278031.1599601.00.0169351.2326040.1714360.2000000.1887090.427354
14(creamy)(cow)0.5605260.6552630.3780700.6744911.0293441.00.0107781.0590710.0648680.4513090.0557770.625733
15(cow)(creamy)0.6552630.5605260.3780700.5769751.0293441.00.0107781.0388820.0826940.4513090.0374270.625733
16(sweet)(cow)0.2543860.6552630.1605260.6310340.9630251.0-0.0061630.934333-0.0489730.214286-0.0702820.438007
17(natural)(cow)0.3710530.6552630.2500000.6737591.0282261.00.0068631.0566930.0436470.3220340.0536520.527642
18(rich)(cow)0.1350880.6552630.1096490.8116881.2387211.00.0211311.8306720.2228150.1610820.4537520.489512
19(mild)(cow)0.1982460.6552630.1263160.6371680.9723851.0-0.0035870.950128-0.0342090.173703-0.0524890.414970
20(United States)(cow)0.2675440.6552630.1763160.6590161.0057281.00.0010041.0110070.0077750.2361930.0108870.464046
21(crumbly)(cow)0.1885960.6552630.1245610.6604651.0079391.00.0009811.0153210.0097070.1731710.0150900.425279
22(nutty)(cow)0.2035090.6552630.1421050.6982761.0656421.00.0087531.1425560.0773370.1982860.1247700.457572
23(semi-soft)(cow)0.2289470.6552630.1535090.6704981.0232501.00.0034881.0462360.0294690.2100840.0441930.452384
24(buttery)(cow)0.2035090.6552630.1631580.8017241.2235151.00.0298061.7386730.2293590.2345520.4248490.525360
25(cow)(artisan)0.6552630.5412280.3315790.5060240.9349551.0-0.0230680.928733-0.1679190.383367-0.0767350.559333
26(artisan)(cow)0.5412280.6552630.3315790.6126420.9349551.0-0.0230680.889969-0.1316760.383367-0.1236340.559333
27(goat)(creamy)0.2245610.5605260.1333330.5937501.0592721.00.0074611.0817810.0721600.2045760.0755990.415811
28(sweet)(creamy)0.2543860.5605260.1403510.5517240.9842971.0-0.0022390.980364-0.0209490.208062-0.0200290.401058
29(mild)(creamy)0.1982460.5605260.1307020.6592921.1762021.00.0195801.2898840.1868470.2081010.2247360.446234
30(United States)(creamy)0.2675440.5605260.1692980.6327871.1289161.00.0193331.1967810.1559060.2569910.1644250.467411
31(semi-soft)(creamy)0.2289470.5605260.1517540.6628351.1825231.00.0234231.3034390.2001810.2379640.2327990.466785
32(buttery)(creamy)0.2035090.5605260.1315790.6465521.1534731.00.0175071.2433890.1670480.2080440.1957460.440647
33(creamy)(artisan)0.5605260.5412280.3061400.5461661.0091231.00.0027681.0108800.0205720.3847850.0107630.555903
34(artisan)(creamy)0.5412280.5605260.3061400.5656401.0091231.00.0027681.0117730.0197070.3847850.0116360.555903
35(goat)(artisan)0.2245610.5412280.1280700.5703121.0537381.00.0065311.0676870.0657660.2008250.0633960.403471
36(sweet)(artisan)0.2543860.5412280.1517540.5965521.1022191.00.0140741.1371270.1243790.2356950.1205910.438470
37(crumbly)(natural)0.1885960.3710530.1017540.5395351.4540661.00.0317751.3658960.3848560.2222220.2678800.406883
38(natural)(artisan)0.3710530.5412280.2385960.6430261.1880871.00.0377721.2851690.2517070.3541670.2218920.541934
39(mild)(artisan)0.1982460.5412280.1061400.5353980.9892281.0-0.0011560.987452-0.0133990.167590-0.0127070.365754
40(United States)(artisan)0.2675440.5412280.1842110.6885251.2721521.00.0394081.4728990.2920730.2949440.3210670.514441
41(crumbly)(artisan)0.1885960.5412280.1228070.6511631.2031211.00.0207331.3151460.2080690.2023120.2396280.439034
42(nutty)(artisan)0.2035090.5412280.1210530.5948281.0990331.00.0109081.1322880.1131330.1940930.1168330.409245
43(sheep)(artisan)0.1605260.5412280.1043860.6502731.2014771.00.0175051.3118010.1997580.1747430.2376890.421571
44(semi-soft)(artisan)0.2289470.5412280.1263160.5517241.0193931.00.0024031.0234140.0246730.1961850.0228790.392556
45(buttery)(artisan)0.2035090.5412280.1035090.5086210.9397531.0-0.0066360.933641-0.0744940.161423-0.0710750.349934
46(soft, creamy)(cow)0.2280700.6552630.1456140.6384620.9743591.0-0.0038320.953527-0.0329670.197384-0.0487380.430342
47(soft, cow)(creamy)0.2000000.5605260.1456140.7280701.2989051.00.0335091.6161290.2876510.2368050.3812380.493926
48(soft, artisan)(creamy)0.1535090.5605260.1061400.6914291.2335351.00.0200951.4242200.2236540.1746030.2978610.440393
49(smooth, creamy)(cow)0.1938600.6552630.1307020.6742081.0289121.00.0036731.0581510.0348570.1819290.0549550.436836
50(smooth, cow)(creamy)0.1877190.5605260.1307020.6962621.2421571.00.0254801.4468830.2400020.2116480.3088590.464719
51(smooth, creamy)(artisan)0.1938600.5412280.1087720.5610861.0366901.00.0038501.0452430.0439030.1736690.0432850.381029
52(smooth, artisan)(creamy)0.1692980.5605260.1087720.6424871.1462211.00.0138761.2292520.1535660.1751410.1864970.418270
53(natural, creamy)(cow)0.1842110.6552630.1350880.7333331.1191431.00.0143811.2927630.1304990.1917810.2264630.469746
54(natural, cow)(creamy)0.2500000.5605260.1350880.5403510.9640061.0-0.0050440.956107-0.0474230.200000-0.0459080.390676
55(United States, creamy)(cow)0.1692980.6552630.1070180.6321240.9646881.0-0.0039170.937102-0.0422050.149144-0.0671200.397722
56(United States, cow)(creamy)0.1763160.5605260.1070180.6069651.0828491.00.0081881.1181550.0928870.1699160.1056690.398944
57(creamy, semi-soft)(cow)0.1517540.6552630.1043860.6878611.0497481.00.0049471.1044350.0558690.1485640.0945590.423583
58(cow, semi-soft)(creamy)0.1535090.5605260.1043860.6800001.2131461.00.0183401.3733550.2075590.1712230.2718560.433114
59(buttery, creamy)(cow)0.1315790.6552630.1078950.8200001.2514061.00.0216761.9152050.2313380.1589150.4778630.492329
60(buttery, cow)(creamy)0.1631580.5605260.1078950.6612901.1797671.00.0164401.2974940.1820830.1752140.2292830.426889
61(buttery)(creamy, cow)0.2035090.3780700.1078950.5301721.4023121.00.0309541.3237410.3601950.2277780.2445650.407778
62(creamy, cow)(artisan)0.3780700.5412280.1929820.5104410.9431161.0-0.0116400.937112-0.0884070.265700-0.0671080.433502
63(creamy, artisan)(cow)0.3061400.6552630.1929820.6303720.9620141.0-0.0076200.932660-0.0538430.251142-0.0722020.462442
64(cow, artisan)(creamy)0.3315790.5605260.1929820.5820111.0383291.00.0071241.0513990.0552250.2760350.0488860.463149
65(natural, cow)(artisan)0.2500000.5412280.1517540.6070181.1215561.00.0164471.1674110.1445090.2373110.1434030.443703
66(natural, artisan)(cow)0.2385960.6552630.1517540.6360290.9706471.0-0.0045890.947156-0.0381990.204492-0.0557930.433811
67(United States, cow)(artisan)0.1763160.5412280.1201750.6815921.2593431.00.0247481.4408310.2500170.2011750.3059560.451817
68(United States, artisan)(cow)0.1842110.6552630.1201750.6523810.9956011.0-0.0005310.991709-0.0053860.167073-0.0083610.417891
69(natural, creamy)(artisan)0.1842110.5412280.1210530.6571431.2141701.00.0213531.3380850.2162230.2002900.2526630.440403
70(natural, artisan)(creamy)0.2385960.5605260.1210530.5073530.9051371.0-0.0126870.892066-0.1209930.178525-0.1209930.361658
71(United States, creamy)(artisan)0.1692980.5412280.1131580.6683941.2349581.00.0215291.3834840.2290300.1894270.2771870.438735
72(United States, artisan)(creamy)0.1842110.5605260.1131580.6142861.0959091.00.0099031.1393760.1072770.1791670.1223270.408082
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "display(HTML(association_rules(frequent_itemsets, min_threshold=0.5).to_html()))" + ] }, { "cell_type": "code", @@ -3820,6 +6654,14 @@ "metadata": {}, "outputs": [], "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "1bb8a528-619e-4ebc-a157-60199cec9de3", + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { diff --git a/locations_to_gps.json b/locations_to_gps.json new file mode 100644 index 0000000..d5ba4d5 --- /dev/null +++ b/locations_to_gps.json @@ -0,0 +1 @@ +{"Galax, Virginia, United States": [36.6612387, -80.9239671], "Northeastern Brazil, Brazil": [-10.3333333, -53.2], "Tieton, Washington, United States": [46.7020686, -120.75535], "Central Balkan Mountains, Bulgaria": [42.6073975, 25.4856617], "Postel, Belgium": [51.2874865, 5.1897863], ", Netherlands": [52.2434979, 5.6343227], "\u00c4\u00e4nekoski, Finland": [62.6032186, 25.7301361], "New Hampshire, United States": [43.4849133, -71.6553992], "Friuli Venezia Giulia and Veneto, Italy": [42.6384261, 12.674297], "County Cavan, Ireland": [54.03497495, -7.2937022825583675], "Charentes-Poitou, France": [45.4039367, 0.3756199], "Veneto, ": [45.6476663, 11.8665254], "Lazio, Sardinia, Italy": [41.9808038, 12.7662312], "Fairview, United States": [40.6333724, -90.1637318], "County Wexford, Ireland": [52.46018745, -6.606515459159162], "Southwestern Wisconsin, United States": [42.53116075, -90.43762550236468], "Co. Carlow, Ireland": [52.69078865, -6.825145150844913], "West Pawlet, VT, United States": [43.356893, -73.24966776033015], "Passendale, Belgium": [50.9003015, 3.0203891], "Serra da Estrela, Portugal": [40.4358994, -7.516865473467464], "Centre-Val de Loire, France": [47.5490251, 1.7324062], "Lucerne, Schwyz, Unterwald, and Zoug, and the following additional places: Muri district in d'Argovi, Switzerland": [47.0505452, 8.3054682], "Bjurholm, Sweden": [63.966667, 19.0], "Po valley region, Italy": [42.6384261, 12.674297], "Wales, Great Britain": [53.28236125, -3.8286207326666837], ", Denmark": [55.670249, 10.3333283], "Asiago, Italy": [45.8753771, 11.5106998], "Flanders, Belgium": [51.096246199999996, 4.178629103169916], "Languedoc, France": [43.65420305, 3.674669940206605], "Brickhill, Co. Clare, Ireland": [52.70642975, -8.751786760846851], "Ontario, Canada": [50.000678, -86.000977], ", Armenia": [4.491976149999999, -75.74135085294314], "Mornington Peninsula, Melbourne, Australia": [-38.3312575, 145.08106868543985], "Bergues, France": [50.9683886, 2.4325247], "Pesaro-Urbino, Italy": [43.694112700000005, 12.701443660480004], "Cheshire, England": [53.2141028, -2.471770086071205], "Indiana, United States": [40.3270127, -86.1746933], "Rhone-Alps, France": [45.2968119, 4.6604809], "Stranraer, Scotland": [54.9044332, -5.026204], "Seattle, Washington, United States": [47.6038321, -122.330062], "St. Gallen (canton), Tufertschwil, Switzerland": [47.1561047, 9.338323], "South East England, United Kingdom": [51.45115235, -0.9935673736185868], "Lombardy, Italy": [45.5703694, 9.7732524], "Utah, United States": [39.4225192, -111.714358], "Illinois, United States": [40.0796606, -89.4337288], ", Wales": [52.2928116, -3.73893], "Low-laying regions, Sweden": [59.6749712, 14.5208584], "Avesnes, France": [50.5495906, 1.9721295], ", Middle East": [39.3014159, -76.5888477], "Midi-Pyrenees, France": [43.8099068, 1.4344926056549236], "Southern California, United States": [34.169262950000004, -116.787448181486], "Piedmont, Italy": [45.060735, 7.923549], "California, United States": [36.7014631, -118.755997], "Gloucestershire, England": [51.7643786, -2.1880661838719386], "North Wootton, England": [52.7923213, 0.4278194], "Severn Valley, England": [52.454530899999995, -2.3755702502240226], "Extremadura, Spain": [39.1748426, -6.1529891], "Cumbrian, United Kingdom": [54.478530449999994, -3.06553306667584], "Lebanon, CT, United States": [40.375713, -76.4626118], "Lodi, Italy": [45.2613104, 9.491678060021837], "Websterville, VT, United States": [44.162985, -72.47576806895253], "Swabia, Germany": [48.15313125, 10.47129100603846], "Stewarton, Scotland": [55.680265, -4.5153023], "Oxfordshire, Great Britain": [51.7412674, -1.2245951], "Ballarat, Victoria, Australia": [-37.5623013, 143.8605645], "old Liburnia (Dalmatia), Croatia": [45.3658443, 15.6575209], "Orkney Isles, Scotland": [56.7861112, -4.1140518], "Puimichel in Provence Alpes, France": [46.603354, 1.8883335], ", Israel": [30.8124247, 34.8594762], "Port Townsend, United States": [48.1179702, -122.769544], ", Iraq": [33.0955793, 44.1749775], ", Greece": [38.9953683, 21.9877132], "Greensboro, VT, United States": [36.0726355, -79.7919754], "Cornwall, England": [50.443348900000004, -4.62465658489158], "South West England, England": [51.50076785, -2.5503106339491204], "Pembrokeshire, United Kingdom": [51.8339209, -4.916667], "Northern Holland, Netherlands": [52.2434979, 5.6343227], "Prince Edward Island, Canada": [46.3355508, -63.1466676], "Central and Western Macedonia, Thessalia, Greece": [38.9953683, 21.9877132], "Richfield, Wisconsin, United States": [44.8766431, -93.2877877], "Burgundy, France": [47.27808725, 4.222486304306048], "Pokolbin, Hunter Valley, Australia": [-32.7792106, 151.2978747], "Cotswolds, England": [51.7489422, -0.2303579], "Beara Peninsula, Co. Cork, Ireland": [51.7280451, -9.767906428362338], "County Tipperary, Clogheen, Ireland": [52.68482145, -7.898147186112796], "Ceredigion, United Kingdom": [52.2945764, -3.9527809990291427], "Dorset, England": [50.79683685, -2.34473226124306], "Maine, United States": [45.709097, -68.8590201], ", Switzerland": [46.7985624, 8.2319736], "Bethania, United Kingdom": [52.2509586, -4.0888576], "Laruns, France": [42.9882368, -0.4266324], ", Sweden": [59.6749712, 14.5208584], "St. Louis, Missouri, United States": [38.6280278, -90.1910154], "Moliterno, Italy": [40.2423024, 15.868903], "Minas Gerais, Brazil": [-18.5264844, -44.1588654], "Troyes , Aube, France": [48.2971626, 4.0746257], "Veneto, Trentino, Italy": [45.6476663, 11.8665254], "Lincolnshire, England": [53.1823034, -0.2031208542548153], "Co. Offaly, Ireland": [53.13617215, -7.810340751784169], "Quebec, Canada": [52.4760892, -71.8258668], "Allgau, Germany": [47.8241593, 11.6822424], ", Hungary": [47.1817585, 19.5060937], "Marathon, NY, United States": [44.8914036, -89.7748098], "Timsbury, Somerset, Scotland": [56.7861112, -4.1140518], "Petaluma, California, United States": [38.2325829, -122.636465], "Landford, England": [50.9700788, -1.6363792], "Piora Valley, Switzerland": [46.7985624, 8.2319736], "Burgund, France": [47.27808725, 4.222486304306048], "Wigtownshire, Scotland": [54.9042579, -5.0248893], "Macedonia, Thrace, Thessalia, Peloponissos, Ionian Islands, Aegean islands, Crete Island and Epirus, Greece": [40.6186482, 22.91795361795959], ", Australia": [-24.7761086, 134.755], "Staffordshire, England": [52.824694199999996, -2.0074546723348115], "Haute Vienne, France": [45.91901925, 1.203176771876291], "Alba, Italy": [44.7007236, 8.0357786], "Campania, Italy": [40.860672, 14.843984], "Taxco, Mexico": [18.5565446, -99.6052838], "New York, United States": [40.7127281, -74.0060152], "Svaneti, Samegrelo, Georgia": [42.63545205, 42.24871384619953], "East Midlands, England": [53.1188177, -1.2597068974971675], "Fornells de la Selva, Giron\u00e8s, Spain": [41.9319675, 2.8090343], "North Cornwall, England": [51.7561518, 0.4645198], "Colorado, United States": [38.7251776, -105.607716], "Nicasio, United States": [38.0615885, -122.6985975], ", Brazil": [-10.3333333, -53.2], "Pyrenees, France": [48.8738565, 2.3852638], "Derbyshire, Leicestershire, Nottinghamshire, England": [53.1185033, -1.5566179305872214], "Qu\u00e9bec, Canada": [52.4760892, -71.8258668], "Manitoba, Canada": [55.001251, -97.001038], "Auvergne, Salers, France": [45.2968119, 4.6604809], "Upper Corsica, France": [46.603354, 1.8883335], "Setubal, Palmela and Sesimbra, Portugal": [38.5241783, -8.8932341], "Roncq, France": [50.7531232, 3.1209016], "Oregon Coast Range, United States": [39.7837304, -100.445882], ", Mexico": [23.6585116, -102.0077097], "Roxburghshire, Scotland": [56.7861112, -4.1140518], "Tipperary, Ireland": [52.4734839, -8.1614446], "Wisconsin, United States": [44.4308975, -89.6884637], "Mankato, MN, United States": [44.1634663, -93.9993505], "Devon, England": [50.724140500000004, -3.6607788161410735], "Kimball, United States": [41.1881305, -103.6997645], "Brooklyn NY, United States": [40.6526006, -73.9497211], "Northern Wisconsin, United States": [44.94725995, -91.39373410986752], "All Holland, Netherlands": [52.4601118, 4.6056526], "Tuscany, Italy": [43.4586541, 11.1389204], "Avila, Spain": [40.656478, -4.7002172], "Belvederis, Lithuania": [55.0820118, 23.3897023], "Naples, Italy": [40.8358846, 14.2487679], "Galicia, Spain": [42.61946, -7.863112], "Castelo Branco, Fund\u00e3o and Idanha-a-Nova, Portugal": [39.97675825, -7.446059929966704], "Pullman, Washington, United States": [46.7304268, -117.173895], "Aveyron, France": [44.315857449999996, 2.5065697302419823], "Ann Arbor, Michigan, United States": [42.2813722, -83.7484616], "Oregon, United States": [43.9792797, -120.737257], ", Austria": [47.59397, 14.12456], "Bregenzerwald, Kleinwalsertal, Gro\u00dfwalsertal, Laiblachtal (Pf\u00e4nderstock) and Rheintal, Austria": [47.387028799999996, 9.95606355528393], "Airedale farming district, New Zealand": [-41.5000831, 172.8344077], "Cevenes, France": [44.3509309, 3.8584812791602983], "massif des Causses, France": [46.603354, 1.8883335], "Stawley, near Wellington, Somerset, England": [50.9961449, -3.3382702], "Canary Islands, Spain": [28.286398900000002, -16.796011808910734], "Timsbury, Somerset, England": [51.3271927, -2.4755923], "Anjou, France": [45.3462, 4.88149], "Co Limerick, Ireland": [52.518831649999996, -8.795834650292788], "Coquet, England": [54.88091196980861, -1.5495607774216265], "Modena, Italy": [44.5384728, 10.935960870530739], "Herefordshire, West Midlands, United Kingdom": [52.083333, -2.75], "Dalmatia, Croatia": [43.538796500000004, 16.175235566874342], "Gloucestershire County, England": [51.9425914, -2.100154122305389], "Prince Edward County, Ontario, Canada": [44.031827, -77.246933], "Karlovy Vary, Czech Republic": [50.2306216, 12.8701437], ", Canada": [61.0666922, -107.991707], ", Afghanistan": [33.7680065, 66.2385139], ", Portugal": [39.6621648, -8.1353519], "Chirac, France": [45.9140138, 0.6548543], "Allg\u00e4u, Germany": [47.5926009, 10.209156], "Ile de France, France": [48.6443057, 2.7537863], "French Basque Country, Midi-Pyr\u00e9n\u00e9es, France": [46.603354, 1.8883335], "St Antoine, France": [44.0361186, 0.8397552], ", Spain": [39.3260685, -4.8379791], "Charentes, France": [45.4039367, 0.3756199], "B\u00e9arnaise in Pyr\u00e9n\u00e9es-Atlantique, France": [46.603354, 1.8883335], "Emilia-Romagna, Italy": [44.525696, 11.039437], "Kinfauns, Perthshire, Scotland": [56.3822607, -3.36565], "Bas-Languedoc, Comtat Venaissin, France": [43.687621, 4.2691037], "Piave Valley, Italy, Italy": [45.735099578237005, 7.320173335891282], "North East Victoria, Australia": [-37.8633951, 145.0100994], "Brittany, France": [48.2640845, -2.9202408], "Fethard, Co Tipperary, Ireland": [52.467222, -7.691111], "Castilla Leon, Spain": [40.4598868, -3.4720773], "Carneros, Sonoma, California, United States": [33.223027, -111.70568456233669], "Loire Valley, France": [47.44927715, -0.34954901296919916], "Bermondsey, London, England": [51.4970125, -0.063268], "Bursa, Turkey": [39.9895878, 28.8944669], "Centre , the department of Loiret, France": [47.5490251, 1.7324062], ", Argentina": [-34.9964963, -64.9672817], "Pays Basque, France": [47.6867895, 7.3927627], "Vermont, United States": [44.5990718, -72.5002608], "Carmarthenshire, Wales": [51.893669849999995, -4.217282721429928], "Island of Pag, Croatia": [45.3658443, 15.6575209], "Sebastopol, California, United States": [38.4021038, -122.824222], "Friuli-Venezia Giulia, Italy": [46.151042, 13.055904], ", Turkey": [39.294076, 35.2316631], "Schoonrewoerd, Leerdam, Netherlands": [51.920458, 5.1156505], "Asturias, Spain": [43.3133868, -5.94192], "Ile-de-France/Champagne, France": [48.5499833, 7.7510775], "island wide, Cyprus": [34.9174159, 32.889902651331866], "Rh\u00f4ne-Alpes, France": [45.3175313, 5.721294352585611], "Aberdeenshire, Scotland": [57.166667, -2.666667], "Co. Cork, Ireland": [51.917535900000004, -8.58597726870895], "Oristano, Italy": [40.02656765, 8.679641647435716], "Zasavica, Serbia": [44.9454307, 19.4987239], "North Yorkshire, England": [54.13453275, -1.498628491239545], ", Italy": [42.6384261, 12.674297], "Orkney Islands, Scotland": [58.94182309999999, -3.129694439563327], "Croisy-sur-Eure, France": [49.0291802, 1.346505], "Swaledale, North Yorkshire, England": [54.38299324007608, -1.9841360652878535], "Canton of Glarus, Switzerland": [46.7985624, 8.2319736], "Pyrenees-Atlantiques, France": [43.18718655, -0.728247400084667], "Pyr\u00e9n\u00e9es, France": [48.8738565, 2.3852638], "Valencia, Spain": [39.4697065, -0.3763353], "East Sussex, United Kingdom": [50.9404266, 0.3699977891068864], ", Serbia": [44.024322850000004, 21.07657433209902], "Oviken, Sweden": [62.9974877, 14.3928671], "Aquitaine, France": [44.24620635, -0.18399787392367906], "Dumfriesshire, Scotland": [55.166667, -3.5], "Huizen, Netherlands": [52.2958122, 5.2567209], "Leiden, Netherlands": [52.1594747, 4.4908843], "Gevrey-Chambertin, Burgundy, France": [47.2261857, 4.9705666], "Azores, Portugal": [37.80855645, -25.473137391245295], "Dumfries, Scotland": [55.0691397, -3.6107936], "Rhone Valley, France": [46.603354, 1.8883335], "Blarney, Ireland": [51.9325233, -8.5678665], "British Columbia, Canada": [55.001251, -125.002441], "Castile-Leon, Spain": [41.55005, -5.1387401], "Illoud (Haute-Marne), France": [48.2089823, 5.5615126], "Pienza, Italy": [43.0765485, 11.6789076], "Averyon, France": [46.603354, 1.8883335], "Banks Peninsular in Canterbury, New Zealand": [-41.5000831, 172.8344077], "Pyr\u00e9n\u00e9es-Atlantiques, France": [43.18718655, -0.728247400084667], "Hamilton, New Zealand": [-37.7878809, 175.281788], "New South Wales, Australia": [-31.8759835, 147.2869493], "Savoie, France": [45.494895150000005, 6.384660381375652], "Tomales, California, United States": [38.2468075, -122.90630461024097], "Wallonia, Belgium": [50.154540049999994, 5.399359762971196], "Aveyron, Laguiole, France": [44.315857449999996, 2.5065697302419823], ", United States": [39.7837304, -100.445882], "Banon, France": [44.0381752, 5.6296701], "Emilia Romagna, Italy": [44.525696, 11.039437], "Wales, London, Wales": [52.41446365, -4.0685073132923], "New York, France": [44.8705067, -0.5504343], "Veneto, Italy": [45.6476663, 11.8665254], "Pays d\u2019Auge, Normandy, France": [49.0356178, 0.1573083324015645], "G\u00e2tinais, France": [48.15497515, 2.811419156673292], "Co Clare, Ireland": [52.857257450000006, -8.937435925994537], "Gravina in Puglia, Murgia, Italy": [40.819725, 16.422779], "Gippsland, Victoria, Australia": [-37.87448275, 146.9111788341666], "Monterey, California, United States": [36.2231079, -121.387742], ", Germany": [51.1638175, 10.4478313], ", Mongolia": [46.8250388, 103.8499736], "Serra da Canastra, Minas Gerais state, Brazil": [-20.1615, -46.76365461658604], "Pinconning, Michigan, United States": [43.853633, -83.964987], "Co. Mayo, Ireland": [53.9087056, -9.298304863654256], "V\u00e4stra G\u00f6taland, Sweden": [58.215850200000006, 12.651820794914073], "Somerset, England": [51.161750850000004, -3.0753867062227487], "Carrigtwohill, ": [51.9094617, -8.2611809], "Calabria, Italy": [39.0565974, 16.5249864], "Bavaria, Germany": [48.9467562, 11.4038717], ", United Kingdom": [54.7023545, -3.2765753], ", Poland": [52.215933, 19.134422], "Sulzberg, Austria": [47.52121792021591, 9.91273065974192], ", Mauritania": [20.2540382, -9.2399263], "Piemonte, Italy": [45.060735, 7.923549], "Franche Comt\u00e9, France": [48.68347355, 2.1776625116070027], "Beira Baixa Province, Portugal": [39.6621648, -8.1353519], "Valpadana, Italy": [39.60288591417616, 16.626802703803317], "Carrigtwohill, Ireland": [51.9094617, -8.2611809], "Maribo, Denmark": [54.7758018, 11.5054333], "South West England, United Kingdom": [51.0339991, -2.949011916021195], "Basque, Pyrenees Mountains, France": [45.359277750000004, -1.1480053453043046], "Crotone, Italy": [39.1873894, 16.87828188895307], "Provence, France": [44.0580563, 6.0638506], "province of Brittany, France": [46.603354, 1.8883335], "Campania, Paestum, Foggia, Italy": [40.860672, 14.843984], "Shelburne Farms, United States": [34.89046225, -82.24340593189123], "Treviso, Veneto, Italy": [45.806691349999994, 12.206315763116372], "Missouri, United States": [38.7604815, -92.5617875], "Georgia, United States": [32.3293809, -83.1137366], "North East Victoria, ": [54.699881, -1.6031519], "Tasmania, Australia": [-42.035067, 146.6366887], "Amou, Gascony, France": [43.59266, -0.7475291], "Normandy, France": [49.0677708, 0.3138532], "County Carlow, Ireland": [52.69078865, -6.825145150844913], "Berry, France": [44.5760186, 0.3095833], "Inagh, Co Clare, Ireland": [52.9071704, -9.2345138], "Mols, Denmark": [56.187042, 10.460782482125193], "Odell, Bedfordshire, England": [52.21843025, -0.5921260787763352], "Pembrokeshire, Wales": [51.8339209, -4.916667], "Comox Valley, Vancouver Island, Canada": [49.670981, -125.0353253], "Provencale, France": [43.7899311033635, 7.524017533510311], "Milford, NJ, United States": [41.2222218, -73.0570603], "Carnia, Italy": [46.3738716, 13.1339829], "Northwest, United States": [34.3129464, -78.1611077], "Auvergne, France": [45.2968119, 4.6604809], "Friuli-Venezia Giulia and the Veneto, Italy": [42.6384261, 12.674297], ", New Zealand": [-41.5000831, 172.8344077], "Adamstown, Co Wexford, Ireland": [53.3360017, -6.4692321], "Castille-Leon, Spain": [41.55005, -5.1387401], "Murazzano, Italy": [44.4746494, 8.0213361], "Massachusetts, United States": [42.3788774, -72.032366], "Haute-Savoie / Upper Savoy, France": [46.06904065, 6.344532137164], ", Belgium": [50.6402809, 4.6667145], "Kent, United Kingdom": [51.20707485, 0.7210361813401444], "Landshut, Germany": [48.536217, 12.1516551], "Brisbane, Australia": [-27.4689682, 153.0234991], "Allgaeu Alps, Germany": [51.1638175, 10.4478313], "Aconcagua, Chile": [-33.030515957094444, -71.5177984276482], "Rio Grande do Sul, Brazil": [-29.8425284, -53.7680577], "Menorca, Balearic Islands, Spain": [39.949257200000005, 4.0499641751186415], "Isere, France": [45.28979315, 5.634382477386232], "Stoneyford, Ireland": [52.5362671, -7.2278963], "Loire, France": [45.75385355, 4.045473682551104], "Cotherstone, England": [54.570244, -1.9804176], ", England": [52.5310214, -1.2649062], "Jura, Switzerland": [47.3566699, 7.1598893], "Charm, Ohio, United States": [40.5067308, -81.7848553], "Chelmarsh, Bridgnorth, Shropshire, England": [52.4875359, -2.4124407], "West Bengal, India": [22.9964948, 87.6855882], "County Antrim, Ireland": [54.864725500000006, -6.143637910742768], ", France": [46.603354, 1.8883335], "Pennsylvania, United States": [40.9699889, -77.7278831], "Stonegate, East Sussex, England": [53.960910892985034, -1.0833748506182423], "Gujarat, India": [22.3850051, 71.745261], ", Cyprus": [34.9174159, 32.889902651331866], "Vorarlberg, Austria": [47.25, 9.9166667], "Poitou-Charentes, France": [46.13244785, -0.15455354898441043], "Larzac, France": [44.74693, 1.0075], "Sonoma, California, United States": [38.5110803, -122.8473388], "Midi-Pyr\u00e9n\u00e9es, France": [43.8099068, 1.4344926056549236], "Corsica, France": [42.188089649999995, 9.068413771427695], "Coast of Oregon, United States": [39.7837304, -100.445882], "Kilmallock County Limerick, Ireland": [52.400645600000004, -8.571161660434711], "Greenville, Indiana, United States": [34.851354, -82.3984882], "Romanian Carpathians, Romania": [46.4046483, 22.9894841933513], "Basilicata, Italy": [40.500571, 16.081953], "Lower Normandy, France": [48.953684499999994, -0.573365358805311], "Lapland, Finland": [67.69291045, 26.728214183162986], "Normandy, Auvilliers, France": [49.0677708, 0.3138532], "Languedoc-Roussillon, France": [43.65420305, 3.674669940206605], "Allagau, Bavarian Alps, Germany": [51.1638175, 10.4478313], "Buxton, Derbyshire, England": [53.2593422, -1.9100768], "Bornholm, Denmark": [55.143122399999996, 14.922629658767558], "Bloomdale, United States": [33.2473378, -96.6794382], "Cornwall, ": [50.416667, -4.75], "Barcelona, Spain": [41.3828939, 2.1774322], "Hunter Valley, Australia": [-32.5421803, 151.2185641], "North Carolina, United States": [35.6729639, -79.0392919], "Laqueuille, France": [45.6507627, 2.7320917], "Minnesota, United States": [45.9896587, -94.6113288], "Sardinia & Campania, Italy": [42.6384261, 12.674297], "South Australia, Australia": [-30.5343665, 135.6301212], "Central and Western Macedonia, Thessaly, Greece": [38.9953683, 21.9877132], ", Ireland": [52.865196, -7.9794599], "NY, United States": [43.1561681, -75.8449946], "Bourgogne, France": [47.27808725, 4.222486304306048], "Virginia, United States": [37.1232245, -78.4927721], "P\u00f3voa de Lanhoso, Portugal": [41.5759516, -8.2699521], "Colby, Wisconsin, United States": [44.5684775, -69.66002565150262], "Lanarkshire, Scotland": [55.5752966, -3.833333], "Herault, France": [43.591422, 3.3553309364095925], ", Scotland": [56.7861112, -4.1140518], "Murcia, Spain": [37.9923795, -1.1305431], "La Velle, Wisconsin, United States": [45.1699553, -109.88428658948227], "Ann Arbor, MI, United States": [42.2813722, -83.7484616], "New Jersey, United States": [40.0757384, -74.4041622], "Duhallow, Ireland": [52.1837912, -9.00609563330653], ", Iceland": [64.9841821, -18.1059013], "Iowa, United States": [41.9216734, -93.3122705], "Queenstown, New Zealand": [-45.0321923, 168.661], "Tain, Scotland": [57.8119372, -4.0550663], "Sardegna, Italy": [40.0912813, 9.0305773], "Nottinghamshire, England": [53.1459288, -1.0214971168122484], "Peekskill, United States": [41.289811, -73.9204922], "Fife, Scotland": [56.3333331, -3.0000001], "Umbria, Lazio, Italy": [42.965916, 12.490236], "Nord-Pas-de-Calais, France": [50.5289634, 2.454515765955904], "Victoria, Australia": [-36.5986096, 144.6780052], "Het Groene Hart, Netherlands": [51.5246, 4.280818038775446], "Inagh, Co Clare, ": [52.9071704, -9.2345138], ", Holland": [52.2434979, 5.6343227]} \ No newline at end of file