#import "qcs.typ": * #set page( paper: "a4", header: align(center)[ QCS - DM5 : Phase estimation - Augustin LUCAS ], ) #question("Assignment Q1", [ Show that after applying the phase estimation circuit described in class, we obtain (in the first register) the state $ 1/2^m sum_(j=0)^(2^m-1)(sum_(k=0)^(2^m-1)e^(2 pi i k (theta-j 2^(-m)))) $ ]) The phase estimation circuit described in class is: #{ import "@preview/quill:0.5.0": * quantum-circuit( lstick($ket(0)$), $H$, slice(label: $ket(Phi_0)$), ctrl(3, show-dot: false), slice(label: $ket(Phi_1)$), mqgate($Q F T_(2^m)^dagger$, n:3), slice(label: $ket(Phi_2)$, n:3), [\ ], setwire(0), midstick($dots.v$), midstick($dots.v$), 2, midstick($dots.v$), [\ ], lstick($ket(0)$), $H$, 1, [\ ], lstick($ket(psi)$), 1, $U$, 3, rstick($$) ) } First, $ ket(Phi_0) = ket(+)^(times.circle m) times.circle ket(phi) $ Then, $ ket(Phi_1) &= gamma_m (U) ket(Phi_0) \ &= gamma_m (U) (ket(+)^(times.circle m) times.circle ket(phi)) \ &= gamma_m (U) (((ket(0)+ket(1))/sqrt(2))^(times.circle m) times.circle ket(phi)) \ &= gamma_m (U) 1/sqrt(2^m) sum_(k=0)^(2^m-1) ket(k) times.circle ket(phi) \ &= 1/sqrt(2^m) sum_(k=0)^(2^m-1) gamma_m (U) (ket(k) times.circle ket(phi)) \ &= 1/sqrt(2^m) sum_(k=0)^(2^m-1) ket(k) times.circle U^k ket(phi) \ &= 1/sqrt(2^m) sum_(k=0)^(2^m-1) e^(2 pi i theta k) ket(k) times.circle ket(phi) $ With $Q F T_(2^m)^dagger = 1/sqrt(2^m) mat( 1, 1, ..., 1; 1, omega, ..., omega^(2^m-1); dots.v, dots.v, dots.down, dots.v; 1, omega^(2^m-1), ..., (omega^(2^m-1))^(2^m-1); )$, where $omega = e^((2 i pi)/2^m)$ we have $ ket(Phi_2) &= Q F T_(2^m)^dagger ket(Phi_1) \ &= 1/sqrt(2^m) sum_(k=0)^(2^m-1) e^(2 pi i theta k) Q F T_(2^m)^dagger ket(k) \ &= 1/sqrt(2^m) sum_(k=0)^(2^m-1) e^(2 pi i theta k ) (1/sqrt(2^m) sum_(j=0)^(2^m-1) e^(-2 pi i k j 2^(-m)) ket(j)) \ &= 1/2^m sum_(j=0)^(2^m-1) (sum_(k=0)^(2^m-1) e^(2 pi i k (theta-2^(-m)j))) ket(j) $ #question("Assignment Q2", [ We now measure this state in the standard basis. Compute the probability $p_j$ of obtaining outcome $j$. ]) $ p_j &= abs(braket(Phi_2, j))^2 \ &= abs(braket(1/2^m sum_(l=0)^(2^m-1) (sum_(k=0)^(2^m-1) e^(2 pi i k (theta-2^(-m)l))) l, j))^2 \ &= abs( 1/2^m sum_(l=0)^(2^m-1) sum_(k=0)^(2^m-1) e^(2 pi i k (theta-2^(-m)l)) braket(l, j) )^2 \ &= abs( 1/2^m sum_(k=0)^(2^m-1) e^(2 pi i k (theta-2^(-m)j)) braket(j, j) )^2 \ &= abs( 1/2^m sum_(k=0)^(2^m-1) (e^(2 pi i (theta-2^(-m)j)))^k)^2 \ &= 1/2^(2m) abs( ( 1-e^(2 pi i (2^m theta - j)) ) /(1-e^(2 pi i (theta - 2^(-m)j))) )^2 $ #question("Assignment Q3", [ Suppose we are aiming for a precision of $t= 2/pi abs(gamma)$. ]) /* $ bb(P)(abs(theta - j 2^(-m)) <= 2^(-t-1)) &= bb(P)(theta in ]j 2^(-m)-2^(-t-1), j 2^(-m)+2^(-t-1)[) \ &= bb(P)(union_(k=j 2^(-m)-2^(-t-1))^(j 2^(-m)+2^(-t-1))(theta=k)) \ &= sum_(k=j 2^(-m)-2^(-t-1))^(j 2^(-m)+2^(-t-1))bb(P)(theta=k) \ &= sum_(k=0)^(2^(-t))bb(P)(theta=k+j 2^(-m)-2^(-t-1)) \ &= sum_(k=0)^(2^(-t))p_(k+j 2^(-m)-2^(-t-1)) \ &= 1/2^(2m)sum_(k=0)^(2^(-t)) abs( 1-e^(2 pi i (2^m theta - j)) )^2 /abs(1-e^(2 pi i (theta - 2^(-m)j)))^2 \ &<= 1/2^(2m)sum_(k=0)^(2^(-t)) abs( 1-e^(2 pi i (2^m theta - j)) )^2 /(2/pi abs(2 pi (theta - 2^(-m)j)))^2 \ &= 1/2^(2m)sum_(k=0)^(2^(-t)) abs( e^(pi i (2^m theta - j))(e^(pi i (2^m theta - j)) - e^(-pi i (2^m theta - j))) )^2 /(2/pi abs(2 pi (theta - 2^(-m)j)))^2 \ &= 1/2^(2m)sum_(k=0)^(2^(-t)) abs(2 i sin(pi i (2^m theta -j)) e^(pi i (2^m theta - j)) )^2 /(2/pi abs(2 pi (theta - 2^(-m)j)))^2 $*/