#import "qcs.typ": * #set page( paper: "a4", header: align(center)[ QCS - DM7 : Decide satisfiability - Augustin LUCAS ], ) #v(10%) #question("Assignment Q1", [ #align(center, { import "@preview/quill:0.5.0": * quantum-circuit( lstick($"input:" psi = alpha ket(0)+beta ket(1)$), 2, slice(label: $ket(phi_0)$), targ(), slice(label: $ket(phi_1)$), 2, rstick("output"), [\ ], lstick(ket(0)), $H$, 1, ctrl(-1), 2, rstick($X$) ) }) Compute Kraus representation of map input $->$ output. ]) #v(2%) $ket(phi_0) &= (alpha ket(0)+beta ket(1)) times.circle (ket(0)+ket(1))/sqrt(2) \ &= alpha/sqrt(2) ket(00) + alpha/sqrt(2) ket(01) + beta/sqrt(2) ket(11) + beta/sqrt(2) ket(10)$ $ket(phi_1) = (alpha ket(0) +beta ket(1))/sqrt(2) times.circle ket(0) + (alpha ket(1) +beta ket(0))/sqrt(2) times.circle ket(1)$ This corresponds on the first qubit to the circuit "do a bit flip with probability $1/2$", which Kraus representation is: $Phi(psi) = (1/sqrt(2) I) psi (1/sqrt(2) I) + (1/sqrt(2) X) psi (1/sqrt(2) X)$ #v(10%) #question("Assignment Q2", [ Let $M=mat(a,b;c,d)$, $a,b,c,d in bb(C)$. Compute $Phi(M)$ where $Phi$ phase flips with probability $1/2$. ]) #v(2%) #align(center, $Phi(M) &= (1-1/2)M + 1/2 Z M Z \ &= 1/2mat(a,b;c,d)+1/2 mat(1,0;0,-1) mat(a,b;c,d) mat(1,0;0,-1) \ &= 1/2 (mat(a,b;c,d)+mat(a,b;-c,-d) mat(1,0;0,-1)) \ &= 1/2 (mat(a,b;c,d)+mat(a,-b;-c,d)) \ &= mat(a,0;0,d)$ )