\documentclass[11pt]{exam} \usepackage[utf8]{inputenc} \usepackage[french]{babel} \usepackage[]{amsthm} %lets us use \begin{proof} \usepackage{amsmath,amsfonts} \usepackage[]{amssymb} %gives us the character \varnothing \usepackage[langfont=caps]{complexity} \usepackage[T1]{fontenc} \usepackage{setspace} \usepackage{tcolorbox} \usepackage{physics} \tcbuselibrary{breakable} \tcbset{%any default parameters width=0.7\textwidth, halign=justify, center, breakable, colback=white } \setstretch{1.5} \title{QCS - DM1} \author{Augustin LUCAS} \date\today %This information doesn't actually show up on your document unless you use the maketitle command below \begin{document} \maketitle %This command prints the title based on information entered above %Section and subsection automatically number unless you put the asterisk next to them. \section*{Q1} \begin{tcolorbox} A system $X$ is in: \[v_0 = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix} \; \text{ or } v_1 = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{pmatrix} \; \] We want to know which is the case. Describe a sequence of operations that determines which is the case. \end{tcolorbox} Let $A = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix}$ $A$ is a unitary matrix, with $Av_0 = \ket{0}$ and $Av_1 = \ket{1}$ Apply the following sequence of operations: \begin{itemize} \item Apply transformation $A$ \item Perform measurement \end{itemize} This allows us to distinguish in which of both states was the system initially. \section*{Q2} \begin{tcolorbox} Show that $w = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ 0 \\ 0 \\ \frac{1}{\sqrt{2}} \end{pmatrix} \;$ is not of the form $v \otimes v'$ \end{tcolorbox} Suppose that $w$ is of form $v \otimes v'$. Given such $v=\begin{pmatrix} a \\ b \end{pmatrix}, v'=\begin{pmatrix} c \\ d \end{pmatrix}$, we have: \[ v \otimes v' = \begin{pmatrix} ac \\ ad \\ bc \\ bd \end{pmatrix} \] Then: \left \{ \begin{array}{c @{=} c} ac & \frac{1}{\sqrt{2}} \\ ad & 0 \\ bc & 0 \\ bd & \frac{1}{\sqrt{2}} \end{array} \right. As $a=0$ or $d=0$, $ac=0$ or $bd=0$. Impossible ! As such, $w$ is not of form $v \otimes v'$ \end{document}