commit 1eefe32fe45ecae91f4c4b3e74d1db54f8113b67 Author: augustin64 Date: Fri Sep 13 08:59:44 2024 +0200 Initial commit diff --git a/.gitignore b/.gitignore new file mode 100644 index 0000000..3eec47d --- /dev/null +++ b/.gitignore @@ -0,0 +1,3 @@ +*.aux +*.log +*.pdf diff --git a/DM1.tex b/DM1.tex new file mode 100644 index 0000000..073316e --- /dev/null +++ b/DM1.tex @@ -0,0 +1,91 @@ +\documentclass[11pt]{exam} +\usepackage[utf8]{inputenc} +\usepackage[french]{babel} +\usepackage[]{amsthm} %lets us use \begin{proof} +\usepackage{amsmath,amsfonts} +\usepackage[]{amssymb} %gives us the character \varnothing +\usepackage[langfont=caps]{complexity} +\usepackage[T1]{fontenc} +\usepackage{setspace} +\usepackage{tcolorbox} +\usepackage{physics} + +\tcbuselibrary{breakable} +\tcbset{%any default parameters + width=0.7\textwidth, + halign=justify, + center, + breakable, + colback=white +} + +\setstretch{1.5} + +\title{QCS - DM1} +\author{Augustin LUCAS} +\date\today +%This information doesn't actually show up on your document unless you use the maketitle command below + +\begin{document} +\maketitle %This command prints the title based on information entered above + +%Section and subsection automatically number unless you put the asterisk next to them. +\section*{Q1} + +\begin{tcolorbox} +A system $X$ is in: + +\[v_0 = + \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix} \; + \text{ or } + v_1 = + \begin{pmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{pmatrix} \; +\] +We want to know which is the case. Describe a sequence of operations that determines which is the case. +\end{tcolorbox} + +Let $A = \begin{pmatrix} +\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ +\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} +\end{pmatrix}$ + +$A$ is a unitary matrix, with $Av_0 = \ket{0}$ and $Av_1 = \ket{1}$ + +Apply the following sequence of operations: +\begin{itemize} + \item Apply transformation $A$ + \item Perform measurement +\end{itemize} + +This allows us to distinguish in which of both states was the system initially. + +\section*{Q2} + +\begin{tcolorbox} +Show that $w = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ 0 \\ 0 \\ \frac{1}{\sqrt{2}} \end{pmatrix} \;$ is not of the form $v \otimes v'$ +\end{tcolorbox} + +Suppose that $w$ is of form $v \otimes v'$. Given such $v=\begin{pmatrix} a \\ b \end{pmatrix}, v'=\begin{pmatrix} c \\ d \end{pmatrix}$, +we have: + +\[ +v \otimes v' = +\begin{pmatrix} ac \\ ad \\ bc \\ bd \end{pmatrix} +\] + +Then: +\left \{ +\begin{array}{c @{=} c} + ac & \frac{1}{\sqrt{2}} \\ + ad & 0 \\ + bc & 0 \\ + bd & \frac{1}{\sqrt{2}} +\end{array} +\right. + + +As $a=0$ or $d=0$, $ac=0$ or $bd=0$. Impossible ! + +As such, $w$ is not of form $v \otimes v'$ + +\end{document}