2024-10-18 09:40:24 +02:00
|
|
|
#import "qcs.typ": *
|
|
|
|
#set page(
|
|
|
|
paper: "a4",
|
|
|
|
header: align(center)[
|
|
|
|
QCS - DM5 : Phase estimation - Augustin LUCAS
|
|
|
|
],
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
#question("Assignment Q1", [
|
|
|
|
Show that after applying the phase estimation circuit described in class,
|
|
|
|
we obtain (in the first register) the state
|
|
|
|
|
|
|
|
$ 1/2^m sum_(j=0)^(2^m-1)(sum_(k=0)^(2^m-1)e^(2 pi i k (theta-j 2^(-m)))) $
|
|
|
|
])
|
|
|
|
|
|
|
|
The phase estimation circuit described in class is:
|
|
|
|
|
|
|
|
#{
|
2024-11-30 10:26:49 +01:00
|
|
|
import "@preview/quill:0.5.0": *
|
2024-10-18 09:40:24 +02:00
|
|
|
|
|
|
|
quantum-circuit(
|
|
|
|
lstick($ket(0)$), $H$, slice(label: $ket(Phi_0)$), ctrl(3, show-dot: false),
|
|
|
|
slice(label: $ket(Phi_1)$), mqgate($Q F T_(2^m)^dagger$, n:3), slice(label: $ket(Phi_2)$, n:3), [\ ],
|
|
|
|
setwire(0), midstick($dots.v$), midstick($dots.v$), 2, midstick($dots.v$), [\ ],
|
|
|
|
lstick($ket(0)$), $H$, 1, [\ ],
|
|
|
|
lstick($ket(psi)$), 1, $U$, 3, rstick($$)
|
|
|
|
)
|
|
|
|
}
|
|
|
|
|
|
|
|
First, $ ket(Phi_0) = ket(+)^(times.circle m) times.circle ket(phi) $
|
|
|
|
Then, $ ket(Phi_1) &= gamma_m (U) ket(Phi_0) \
|
|
|
|
&= gamma_m (U) (ket(+)^(times.circle m) times.circle ket(phi)) \
|
|
|
|
&= gamma_m (U) (((ket(0)+ket(1))/sqrt(2))^(times.circle m) times.circle ket(phi)) \
|
|
|
|
&= gamma_m (U) 1/sqrt(2^m) sum_(k=0)^(2^m-1) ket(k) times.circle ket(phi) \
|
|
|
|
&= 1/sqrt(2^m) sum_(k=0)^(2^m-1) gamma_m (U) (ket(k) times.circle ket(phi)) \
|
|
|
|
&= 1/sqrt(2^m) sum_(k=0)^(2^m-1) ket(k) times.circle U^k ket(phi) \
|
|
|
|
&= 1/sqrt(2^m) sum_(k=0)^(2^m-1) e^(2 pi i theta k) ket(k) times.circle ket(phi) $
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
With $Q F T_(2^m)^dagger = 1/sqrt(2^m) mat(
|
|
|
|
1, 1, ..., 1;
|
|
|
|
1, omega, ..., omega^(2^m-1);
|
|
|
|
dots.v, dots.v, dots.down, dots.v;
|
|
|
|
1, omega^(2^m-1), ..., (omega^(2^m-1))^(2^m-1);
|
|
|
|
)$, where $omega = e^((2 i pi)/2^m)$
|
|
|
|
|
|
|
|
we have $ ket(Phi_2) &= Q F T_(2^m)^dagger ket(Phi_1) \
|
|
|
|
&= 1/sqrt(2^m) sum_(k=0)^(2^m-1) e^(2 pi i theta k) Q F T_(2^m)^dagger ket(k) \
|
|
|
|
&= 1/sqrt(2^m) sum_(k=0)^(2^m-1) e^(2 pi i theta k )
|
|
|
|
(1/sqrt(2^m) sum_(j=0)^(2^m-1) e^(-2 pi i k j 2^(-m)) ket(j)) \
|
|
|
|
&= 1/2^m sum_(j=0)^(2^m-1)
|
|
|
|
(sum_(k=0)^(2^m-1) e^(2 pi i k (theta-2^(-m)j))) ket(j) $
|
|
|
|
|
|
|
|
|
|
|
|
#question("Assignment Q2", [
|
|
|
|
We now measure this state in the standard basis.
|
|
|
|
Compute the probability $p_j$ of obtaining outcome $j$.
|
|
|
|
])
|
|
|
|
|
|
|
|
$ p_j &= abs(braket(Phi_2, j))^2 \
|
|
|
|
&= abs(braket(1/2^m sum_(l=0)^(2^m-1)
|
|
|
|
(sum_(k=0)^(2^m-1) e^(2 pi i k (theta-2^(-m)l))) l, j))^2 \
|
|
|
|
&= abs( 1/2^m sum_(l=0)^(2^m-1) sum_(k=0)^(2^m-1)
|
|
|
|
e^(2 pi i k (theta-2^(-m)l)) braket(l, j) )^2 \
|
|
|
|
&= abs( 1/2^m sum_(k=0)^(2^m-1)
|
|
|
|
e^(2 pi i k (theta-2^(-m)j)) braket(j, j) )^2 \
|
|
|
|
&= abs( 1/2^m sum_(k=0)^(2^m-1)
|
|
|
|
(e^(2 pi i (theta-2^(-m)j)))^k)^2 \
|
|
|
|
&= 1/2^(2m) abs(
|
|
|
|
( 1-e^(2 pi i (2^m theta - j)) )
|
|
|
|
/(1-e^(2 pi i (theta - 2^(-m)j)))
|
|
|
|
)^2 $
|
|
|
|
|
|
|
|
#question("Assignment Q3", [
|
|
|
|
Suppose we are aiming for a precision of $t<m$ bits, i.e.,
|
|
|
|
we would like the outcome to be some $j$ such that $abs(theta - j 2^(-m)) <= 2^(-t-1)$.
|
|
|
|
Compute a lower bound on the probability of obtaining such an outcome.
|
|
|
|
The bound should be such that if $t$ is fixed and $m$ grows, the probability of success goes to $1$.
|
|
|
|
|
|
|
|
For this you may use the following inequality without proof :
|
|
|
|
for $gamma in [-pi, pi], abs(1-e^(i gamma)) >= 2/pi abs(gamma)$.
|
|
|
|
])
|
|
|
|
|
|
|
|
/*
|
|
|
|
$ bb(P)(abs(theta - j 2^(-m)) <= 2^(-t-1)) &= bb(P)(theta in ]j 2^(-m)-2^(-t-1), j 2^(-m)+2^(-t-1)[) \
|
|
|
|
&= bb(P)(union_(k=j 2^(-m)-2^(-t-1))^(j 2^(-m)+2^(-t-1))(theta=k)) \
|
|
|
|
&= sum_(k=j 2^(-m)-2^(-t-1))^(j 2^(-m)+2^(-t-1))bb(P)(theta=k) \
|
|
|
|
&= sum_(k=0)^(2^(-t))bb(P)(theta=k+j 2^(-m)-2^(-t-1)) \
|
|
|
|
&= sum_(k=0)^(2^(-t))p_(k+j 2^(-m)-2^(-t-1)) \
|
|
|
|
&= 1/2^(2m)sum_(k=0)^(2^(-t))
|
|
|
|
abs( 1-e^(2 pi i (2^m theta - j)) )^2
|
|
|
|
/abs(1-e^(2 pi i (theta - 2^(-m)j)))^2 \
|
|
|
|
&<= 1/2^(2m)sum_(k=0)^(2^(-t))
|
|
|
|
abs( 1-e^(2 pi i (2^m theta - j)) )^2
|
|
|
|
/(2/pi abs(2 pi (theta - 2^(-m)j)))^2 \
|
|
|
|
&= 1/2^(2m)sum_(k=0)^(2^(-t))
|
|
|
|
abs( e^(pi i (2^m theta - j))(e^(pi i (2^m theta - j)) - e^(-pi i (2^m theta - j))) )^2
|
|
|
|
/(2/pi abs(2 pi (theta - 2^(-m)j)))^2 \
|
|
|
|
&= 1/2^(2m)sum_(k=0)^(2^(-t))
|
|
|
|
abs(2 i sin(pi i (2^m theta -j)) e^(pi i (2^m theta - j)) )^2
|
|
|
|
/(2/pi abs(2 pi (theta - 2^(-m)j)))^2
|
|
|
|
|
|
|
|
$*/
|