QCS/DM1.tex

92 lines
2.2 KiB
TeX
Raw Normal View History

2024-09-13 08:59:44 +02:00
\documentclass[11pt]{exam}
\usepackage[utf8]{inputenc}
\usepackage[french]{babel}
\usepackage[]{amsthm} %lets us use \begin{proof}
\usepackage{amsmath,amsfonts}
\usepackage[]{amssymb} %gives us the character \varnothing
\usepackage[langfont=caps]{complexity}
\usepackage[T1]{fontenc}
\usepackage{setspace}
\usepackage{tcolorbox}
\usepackage{physics}
\tcbuselibrary{breakable}
\tcbset{%any default parameters
width=0.7\textwidth,
halign=justify,
center,
breakable,
colback=white
}
\setstretch{1.5}
\title{QCS - DM1}
\author{Augustin LUCAS}
\date\today
%This information doesn't actually show up on your document unless you use the maketitle command below
\begin{document}
\maketitle %This command prints the title based on information entered above
%Section and subsection automatically number unless you put the asterisk next to them.
\section*{Q1}
\begin{tcolorbox}
A system $X$ is in:
\[v_0 =
\begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix} \;
\text{ or }
v_1 =
\begin{pmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{pmatrix} \;
\]
We want to know which is the case. Describe a sequence of operations that determines which is the case.
\end{tcolorbox}
Let $A = \begin{pmatrix}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{pmatrix}$
$A$ is a unitary matrix, with $Av_0 = \ket{0}$ and $Av_1 = \ket{1}$
Apply the following sequence of operations:
\begin{itemize}
\item Apply transformation $A$
\item Perform measurement
\end{itemize}
This allows us to distinguish in which of both states was the system initially.
\section*{Q2}
\begin{tcolorbox}
Show that $w = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ 0 \\ 0 \\ \frac{1}{\sqrt{2}} \end{pmatrix} \;$ is not of the form $v \otimes v'$
\end{tcolorbox}
Suppose that $w$ is of form $v \otimes v'$. Given such $v=\begin{pmatrix} a \\ b \end{pmatrix}, v'=\begin{pmatrix} c \\ d \end{pmatrix}$,
we have:
\[
v \otimes v' =
\begin{pmatrix} ac \\ ad \\ bc \\ bd \end{pmatrix}
\]
Then:
\left \{
\begin{array}{c @{=} c}
ac & \frac{1}{\sqrt{2}} \\
ad & 0 \\
bc & 0 \\
bd & \frac{1}{\sqrt{2}}
\end{array}
\right.
As $a=0$ or $d=0$, $ac=0$ or $bd=0$. Impossible !
As such, $w$ is not of form $v \otimes v'$
\end{document}