setting tp1

This commit is contained in:
David Coeurjolly 2021-01-21 09:10:55 +01:00
parent a893c030fd
commit 07e47d5b09
3 changed files with 53 additions and 1 deletions

View File

@ -4,4 +4,4 @@
## Practicals ## Practicals
1. [Color Transfer via Discrete Optimal Transport using the sliced approach](https://codimd.math.cnrs.fr/s/2eRBqV9zl) 1. [Color Transfer via Discrete Optimal Transport using the sliced approach](https://codimd.math.cnrs.fr/s/s_rh7X9wF), [Material](https://github.com/dcoeurjo/CGDI-Practicals/tree/main/1-SlicedOptimalTransport)

3
misc/README.md Normal file
View File

@ -0,0 +1,3 @@
# Extra tools
* `computeHistogram.py`: compute and the three RGB histograms from an image.

49
misc/computeHistogram.py Executable file
View File

@ -0,0 +1,49 @@
#!/usr/bin/env python3
# import the necessary packages
from matplotlib import pyplot as plt
import numpy as np
import argparse
import cv2
# construct the argument parser and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-i", "--image", required = True, help = "Path to the image")
ap.add_argument("-o", "--outputhist", required = True, help = "Path to the histogram image")
args = vars(ap.parse_args())
# load the image and show it
image = cv2.imread(args["image"])
cv2.imshow("image", image)
# grab the image channels, initialize the tuple of colors,
# the figure and the flattened feature vector
chans = cv2.split(image)
colors = ("b", "g", "r")
plt.figure()
plt.title("")
plt.xlabel("Bins")
plt.ylabel("# of Pixels")
features = []
# loop over the image channels
for (chan, color) in zip(chans, colors):
# create a histogram for the current channel and
# concatenate the resulting histograms for each
# channel
hist = cv2.calcHist([chan], [0], None, [256], [0, 256])
features.extend(hist)
# plot the histogram
plt.plot(hist, color = color)
plt.xlim([0, 256])
plt.savefig(args["outputhist"])
# here we are simply showing the dimensionality of the
# flattened color histogram 256 bins for each channel
# x 3 channels = 768 total values -- in practice, we would
# normally not use 256 bins for each channel, a choice
# between 32-96 bins are normally used, but this tends
# to be application dependent
print("flattened feature vector size: %d" % (np.array(features).flatten().shape))