
Lab 5
Smart IRs, part A: Control Flow Graph in SSA Form

Objective

• Convert a CFG to SSA Form.
• Convert a CFG out of SSA Form.

During the previous lab, you wrote a dummy code generator for the MiniC language, and converted the
linear representation into a CFG. In this lab the objective is to prepare the field for more advanced compilation
techniques, which will allow us to emit more efficient RISCV code. We remind you there are slides on the
course webpage to help: https://github.com/Drup/cap-lab24

This lab is in two parts, which will be graded together: at the end of lab 5b, you will have to deposit your
work of this lab 5a as well as lab 5b.

You will extend your previous code, in the same MiniC project, but in the TP05/ subdirectory.

5.1 SSA Form

Most of the code related to SSA is located in the TP05/EnterSSA.py and TP05/ExitSSA.py files. They re-
spectively contain two main functions:

• enter_ssawhich converts a control flow graph to SSA form.
• exit_ssawhich removes the φ nodes, converting out SSA form.
The local documentation has been updated with:
• in the Lib.PhiNodemodule the notion of PhiNode, a subclass of Statement representing φ nodes.
• in the Lib.Dominators module several functions for performing CFG analyses related to dominance

(computing the domination tree, . . .).
The provided code uses Python sets, and you will have to manipulate these objects during this lab. Thus,

we encourage you to consult the documentation on set operations:
• The tutorial https://docs.python.org/3/tutorial/datastructures.html#sets
• The API https://docs.python.org/3/library/stdtypes.html#set

The end goal is to complete the missing pieces for entering into SSA form and then for leaving SSA form,
respectively in TP05/EnterSSA.py and TP05/ExitSSA.py.

EXERCISE #1 Ï Understanding the construction of the dominance frontier

Three main functions are provided in Lib.Dominators:
• computeDom, which computes the dominators of each block
• computeDT, which builds the domination tree of the CFG
• computeDF, which yields the dominance frontier of each block
Understand what each of these functions is doing and how they are working together. The algorithms they

implement are those seen in the course.
You can look at the source of these functions in the local documentation.

5.2 Conversion to SSA Form

In this section, we will complete the EnterSSA.py file.

EXERCISE #2 Ï Putting everything together

Laure Gonnord, Matthieu Moy, Gabriel Radanne et al. 1/4

https://github.com/Drup/cap-lab24
https://docs.python.org/3/tutorial/datastructures.html#sets
https://docs.python.org/3/library/stdtypes.html#set
https://github.com/Drup/cap-lab24/blob/main/course/cap_cours06a_ssa.pdf

5.2. CONVERSION TO SSA FORM LAB 5. SMART IRS, PART A: CONTROL FLOW GRAPH IN SSA FORM

lbl_div_by_zero_0_main

lbl_end_while_2_main lbl_main_7_main

lbl_end_relational_3_main lbl_main_6_main

lbl_begin_while_1_main

lbl_main_5_main

Figure 5.1: The domination tree of df03.c

On top of the dominance-related helper functions, EnterSSA.py contains two functions that are useful for
going to SSA Form:

• provided the dominance frontier of the CFG, insertPhis inserts φ nodes in the CFG.
• then, rename_variables renames variables that appear in instructions or φ nodes, in accordance with

the previously inserted φ nodes; rename_block is an auxiliary function for rename_variables.
For now, we do not ask you to work on the three incomplete functions insertPhis, rename_block and

rename_variables, so your code will not be testable right away.
Complete the function enter_ssa so that it puts a given CFG into SSA form. For that purpose you will

use functions from the dominators library and the incomplete functions from EnterSSA.py. This should take
about 5 simple lines of code.

If you called the previously mentioned functions and Pyright1 does not find any typing error, you are prob-
ably fine.

To run MiniCC with your SSA implementation, run

python3 MiniCC.py --mode=codegen-ssa --reg-alloc none /path/to/example.c

You can add the --dom-graphs option to the MiniCC.py invocation to view the domination tree and the CFG
annotated with dominance frontiers graphically.

EXERCISE #3 Ï Testing the dominance-related functions
Run your compiler in SSA mode on various programs (the files dfxx.c from Lab 4 are interesting test cases)
and check that the graphical domination tree and dominance frontiers are correct.

For the test TP04/tests/provided/dataflow/df03.c the domination tree should be as depicted in fig-
ure 5.1 while the annotated CFG should look like figure 5.2.

EXERCISE #4 Ï Adding φ nodes

We will now insert the φ nodes. We recall the following algorithm from the course

Insert-phi ::=
for x in Vars:
for d in Defs(x):
for b in DF(d):
if there are no φ-node associated to x in b:
add one such φ-node
add b to Defs(x)

Complete inEnterSSA.py the procedureinsertPhiswhich inserts theφnodes. Pay attention on where
to add the φ instructions in the blocks.

At this point, you can use

1Reminder: make test-pyright allows you to run Pyright on your code at any time.

Laure Gonnord, Matthieu Moy, Gabriel Radanne et al. 2/4

5.2. CONVERSION TO SSA FORM LAB 5. SMART IRS, PART A: CONTROL FLOW GRAPH IN SSA FORM

lbl_div_by_zero_0_main:
 la a0, lbl_div_by_zero_0_main_msg
 call println_string
 li a0, 1
 call exit
 return

Dominance frontier:
{}

lbl_end_while_2_main:
 mv a0, temp_1
 call println_int
 li a0, 0
 return

Dominance frontier:
{}

lbl_main_7_main:
 li temp_7, 1
 sub temp_8, temp_2, temp_7
 mv temp_2, temp_8
 add temp_9, temp_1, temp_2
 mv temp_1, temp_9
 j lbl_begin_while_1_main

Dominance frontier:
{lbl_begin_while_1_main}

lbl_begin_while_1_main:
 li temp_5, 1
 li temp_6, 0
 ble temp_2, temp_5, lbl_end_relational_3_main, lbl_main_6_main

Dominance frontier:
{lbl_begin_while_1_main}

lbl_end_relational_3_main:
 beq temp_6, zero, lbl_end_while_2_main, lbl_main_7_main

Dominance frontier:
{lbl_begin_while_1_main}

lbl_main_6_main:
 li temp_6, 1
 j lbl_end_relational_3_main

Dominance frontier:
{lbl_end_relational_3_main}

lbl_main_5_main:
 li temp_0, 0
 li temp_1, 0
 li temp_2, 0
 li temp_3, 6
 mv temp_2, temp_3
 li temp_4, 0
 mv temp_1, temp_4
 j lbl_begin_while_1_main

Dominance frontier:
{}

Figure 5.2: The annotated CFG of df03.c

Laure Gonnord, Matthieu Moy, Gabriel Radanne et al. 3/4

5.3. CONVERSION OUT OF SSA FORM LAB 5. SMART IRS, PART A: CONTROL FLOW GRAPH IN SSA FORM

python3 MiniCC.py --mode=codegen-ssa --reg-alloc none --ssa-graphs /path/to/example.c

to see the CFG almost under SSA Form: theφ nodes are all of the form temp_x = φ(temp_x, ..., temp_x).
The next step is to rename the variables.

EXERCISE #5 Ï Variable renaming

Complete the missing pieces in the functions rename_block and rename_variables, following the algo-
rithm of the course.

At this point, you should be able to call the enter_ssa procedure on any control flow graph to convert it to
SSA Form. Use the --ssa-graphsoption to visualize the resulting graph in SSA Form and verify its correctness.

5.3 Conversion out of SSA Form

In this section, we will complete the ExitSSA.py file.
The φ instructions we have added are convenient for manipulating the control flow graph, but are not

implemented by processors. We need to remove them before emitting machine code.

EXERCISE #6 Ï Replacement of φ nodes by moves

A φ node can be eliminated by creating new blocks containing moves.
For instance, consider the block b2, with two parents b0 and b1, containing the following φ nodes:

x2 =φ(b0 : x0,b1 : x1)

y2 =φ(b0 : y0,b1 : y1)

We will insert two new blocks:
• one between b0 and b2 containing the moves x2 ← x0; y2 ← y0

• one between b1 and b2 containing the moves x2 ← x1; y2 ← y1

1. Complete the procedure generate_moves_from_phiswhich creates a list of mv instructions equiva-
lent to the φ nodes to replace.

2. Complete the procedure exit_ssawhich removes the φ nodes and add blocks containing the moves
computed by generate_moves_from_phis. Do not forget to remove all edges and to modify instruc-
tions appropriately.

At this point, you should be able to call the exit_ssa procedure on any control flow graph to convert it out
of SSA Form. Use the --graph option to visualize the resulting CFG and verify its correctness.

EXERCISE #7 Ï Massive tests

At this point, all the tests should pass (or be skipped) after going in and out of SSA Form! Check that all
your tests from previous labs still work after transiting by SSA Form, using

make test-lab4 MODE=codegen-ssa

Laure Gonnord, Matthieu Moy, Gabriel Radanne et al. 4/4

	Smart IRs, part A: Control Flow Graph in SSA Form
	SSA Form
	Conversion to SSA Form
	Conversion out of SSA Form

