Compilation (#7):
Register Allocation on SSA

Laure Gonnord & Matthieu Moy & Gabriel Radanne & other
Master 1, ENS de Lyon et Dpt Info, Lyon1

2024-2025

[N
)))Lyon 1 EEEE
) ) [ BN

ENS DE LYON




Where are we?

Allocation

----3LinearCode
Parsing

: :
Laure Gonnord & Matthieu Moy & Gabriel Radanne & other (M@orhpdatiok ENSILAP) Register Alloc on SSA 2024-2025 «2/86 —



Properties in SSA: Liveness

0 Properties in SSA: Liveness
9 Register Allocation with graph coloring
© Register Allocation on SSA

@ LAB : smart code Generation

: :
Laure Gonnord & Matthieu Moy & Gabriel Radanne & other (M@orhpdatiok ENSILAP) Register Alloc on SSA 2024-2025 « 3/86 —



Properties in SSA: Liveness

Liveness: Recap

Liveness is essential for many optimization, notably register allocation.

Definition (Alive Variable)

In a given program point, a variable is said to be alive if the value it contains may
be used in the rest of the execution.

: :
Laure Gonnord & Matthieu Moy & Gabriel Radanne & other (M@orhpdatiok ENSILAP) Register Alloc on SSA 2024-2025 «4/86 —



Properties in SSA: Liveness

Liveness: SSA to the rescue

x?v‘_(p(xl!xz)
Beoln )
L |return xz + 35+ py

b _\_[retu:m xX+y+p )

Live range with SSA
Live range on a CFG

:
Laure Gonnord & Matthieu Moy & Gabriel Radanne & other (M@orhpdatiok ENSILAP) Register Alloc on SSA 2024-2025 «5/86 —



Properties in SSA: Liveness

Liveness Analysis in SSA Form Programs

* The problem of determining the program points along
which a variable is alive has a simple solution for SSA

form programs.
For each statement S in the program:

IN[S] = OUT[S] = {}

. i:f:_ ‘1>><iol'O ig")t . For each variable v in the program:
s e For each statement S that uses v:
PRR—— 1/ N\ live(S, v)
50 if i, < 20 goto Lg L,: ret i,

| . 1 live(S, v):
L,: iy =1, + 2 Lg: goto Lg ) IN[S] :IN[S] U {V}

\ / For each P in pred(S):

i = ol 1) Can you point OUT[P]=OUT[P] U {v}
L: goto L, where i, is alive if P does not define v
in this program? live(P, v)
6/86



Properties in SSA: Liveness

Liveness Analysis in SSA Form Programs

The points where i, is alive
have been marked with red

rectangles.
Tricky question:
is i, alive i, = (i, 1)
somewhere L,: if i, > 10 goto I,
within block L.?

L,: i, =i, + 1

50 if 1, < 20 goto Lg L,: ret i,
‘L4: i, =1, + 2 :

i, = ¢(i;, 1)
Lg: goto L,

7/86



Properties in SSA: Liveness

Liveness Analysis in SSA Form Programs

The answer for the C°‘|’|'d iztazd_ ii L=
" . . allocatead Into
tricky question is NO.

the same
Uses of variables in phi- | memory space?
functions are oe— I, iy=1
considered in a
different way. The i, = o(iy, i,
variable is effectively Ly: 1f 4, > 10 goto L,

\

used in the OUT set of \
the predecessor block Lyp i, =i, +1 :
where its definition 3t Mt £ 20 goto Ty i et b

comes from. In other 7Z % l

words, i, is alive at L, iy =i, + 2 :

OUTI[L;], but is not alive \

at IN[Lg]. 7
i, = (i, 1y)

Lg: goto L,

8/86



Properties in SSA: Liveness

Liveness Analysis in SSA Form Programs

For each statement S in the program:
IN[S]=OUTI[S] = {}

Why can we solve liveness
izl oy EER il For each variable v in the program:

programs without having .
N For each statement S that uses v:

point algorithm? live(S, v)

live(S, v):
IN[S]=IN[S] U {v}
For each P in pred(S):
OUT[P]=OUT[P] U {v}
if P does not define v
live(P, v)

“: Notice that phi-functions should be handled in a different way. Do you know why and how?
9/86



Properties in SSA: Liveness

Liveness Analysis in SSA Form Programs

Our algorithm works due to the key
property of SSA form programs: every
use of a variable v is dominated by the
definition of v. Thus, we can traverse the
CFG of the program, starting from the
uses of a variable, until we stop at its
definition. We are certain to stop,
because of the key property. Otherwise,
the variable is used without being
defined. In this case, we will reach the
root node of the CFG, and we assume
that the variable is alive at the input of
the program.

10/86



Register Allocation with graph coloring

o Properties in SSA: Liveness

e Register Allocation with graph coloring
@ Conflict (Interference) Graph
@ Coloring
@ Spilling strategies

Q Register Allocation on SSA

0 LAB : smart code Generation

11/86



Register Allocation with graph coloring Conflict (Interference) Graph

e Register Allocation with graph coloring
@ Conflict (Interference) Graph

12/86



Register Allocation with graph coloring Conflict (Interference) Graph

Step 2: Interferences

Here is the output of the liveness analysis for a + (b + ¢):

\tmpl tmpy  tmpz tmps tmps  tmps

load tmpl,1la
load tmp2,1b
load tmp3,1lc
ADD tmp4, tmp2, tmp3
MV tmp5, tmp4
ADD tmp6, tmpl, tmp5

1

» tmplis in conflict with tmp2 (because of instruction 3) denoted by tmp; > tmps.

13/86



Register Allocation with graph coloring Conflict (Interference) Graph

Interference graph

The relation i defines a conflict/interference graph:

We want a correct allocation with respect to <:
tmpy > tmps = Alloc(tmpy) # Alloc(tmpz).

» Graph coloring.

14/86



Register Allocation with graph coloring Conflict (Interference) Graph

Live variables and Minimum registers

| tmpy  tmpy  tmps  tmps tmps _tmps

load tmpl,la
load tmp2,1b
load tmp3,1lc
ADD tmp4, tmp2, tmp3
LETI tmp5, tmp4
ADD tmp6, tmpl, tmp5

How many variables are live at the same point ?
How many registers do we need ?

15/86



Register Allocation with graph coloring Conflict (Interference) Graph

MinReg vs MaxLive : A pathological example

Definition: MaxLive

The maximum number of registers that are
simultaneously alive at any program point of the
program’s control flow graph

Definition: MinReg
The minimum number of registers that a program
needs )

The difference is strict! There exists programs such
that MinReg > MaxLive
» Let’s try on this example

16/86



Register Allocation with graph coloring Conflict (Interference) Graph

Running example

Important: in this example consider the r; as temporary registers, like the
others.

r3
rl
r2
0
a

[o3 oM o VRN o]

—

Ls: |d d+ b
e e -1
(e > 0)?goto L,

Ly: |rl =d
r3 =c¢
return Dashed edges represent moves!

17/86



Register Allocation with graph coloring Conflict (Interference) Graph

Running example

Important: in this example consider the r; as temporary registers, like the

others.
L;:|c =13
a=rl
b = r2
d=0
e = a
Li: |d=d + b
e=e -1
(e > 0)?goto L,

Lg:

noe Let’s look at the graph without
Leturn moves first

17/86



Register Allocation with graph coloring Coloring

e Register Allocation with graph coloring

@ Coloring

18/86



Register Allocation with graph coloring Coloring

Kempe’s simplification algorithm 1/2

On the interference graph (without coalesce edges):

Proposition (Kempe 1879)
Suppose the graph contains a node m with fewer than K neighbours. Then if
G' = G\ {m} can be K-colored, then G can be K-colored as well.

» Pick a low degree node, and remove it, and continue until remove all (the graph
is K-colorable) or ...

19/86



Register Allocation with graph coloring Coloring

Kempe’s simplification algorithm 2/2

e .
ﬂo\o




Register Allocation with graph coloring Coloring

Let’s color! (“Kempe’s heuristic”)
@ We assign colors to the nodes greedily, in the reverse order in which nodes
are removed from the graph.

@ The color of the next node is the first color that is available, i.e. not used by
any neighbour.

¢ _d
a
12 b . E [::]
rl ° D
2
o
3 a d 13 D

21/86



Register Allocation with graph coloring Coloring

Greedy coloring example 1/2

o

)
o
¥

r2
rl

HERE

a

zl:l;m o

o

' :
|E “

o o

-

-

-
[#=[e ] ||+
o ¥}

-
Elzlnm

©)
S
%

—
7
|<]s

22/86



Register Allocation with graph coloring Coloring

Greedy coloring example 2/2

Y

=l E

j



Register Allocation with graph coloring Coloring

On the number of colors (K)

In the last example, we chose K=4, and this is nice, because the graph is
4-colorable.

@ The given heuristic may fail to color the graph with K colors: it doesn’t mean
that the graph is not K-colorable (heuristic!).
@ We can choose:

e either to eliminate the “non-colorable node” of the graph and continue with the
other nodes inside the node stack.
e either to increment the K parameter.

24/86



Register Allocation with graph coloring Spilling strategies

e Register Allocation with graph coloring

@ Spilling strategies

25/86



Register Allocation with graph coloring Spilling strategies

Recall memories - Final code generation

With a 3 address code + allocation, rewrite each 3 address instruction into “real
code”:

@ Each temporary is rewritten into its allocated physical register.

@ If the temporary is in memory (Spilling), we generate code with appropriate
loads and stores.

26/86



Register Allocation with graph coloring Spilling strategies

If the graph was not successfully colored

Non-colored variables' are named spilled temporaries.
There are many solutions to handle spilled variables.

Teither not colored at all or colored with number >K
27/86



Register Allocation with graph coloring Spilling strategies

A naive solution: also color memory!

@ Launch the coloration algorithm with an infinite number of colors:

o first colors are mapped to registers (used in priority by the coloring algorithm)
e other colors are mapped to offsets in the stack, i.e. spilled to memory

@ Drawback: we need a few registers to implement the spilling

1d s0, [locationfortemp2]

1d s1, [locationfortemp3]
add templ, temp2, temp3 — add s2, s0, sl

sd s2, [locationfortempl]

(Still OK for us in practice)

28/86



Register Allocation with graph coloring Spilling strategies

More sophisticated: Live range splitting

Idea: Modify the code to lower the number of simultaneously alive registers.
Invent 2 versions of the same variable (live-range splitting), and modify the code
into:

ADD temp51, temp4d, temp3
STORE temp51, [locationinmemory] # replace with actual location

LOAD temp52, [locationinmemory] #same
ADD temp6, temp52, #5

» But now we have to allocate these two new variables!

We relaunch the coloring algorithm. This is called Iterative Register Allocation.

29/86



Register Allocation with graph coloring Spilling strategies

To go further: Iterative Register Coalescing® ENSL Only

Two new optimizations to improve register allocation further
@ Register coalescing
© Clever spilling

An iterative algorithm with many steps:

?

potential

actual

build ——simplify ——coalesce >freeze

T T 1 |

“spill

>select > spill

2lterated Register Coalescing, TOPLAS (1996)

30/86



Register Allocation with graph coloring Spilling strategies

lterative Register Coalescing — Coalescing ENSL Only

Coalescing consists of collapsing two move related nodes together (dashed lines
= move instructions)

Which variables can be coalesced without causing spills ?
31/86



Register Allocation with graph coloring Spilling strategies

lterative Register Coalescing — Coalescing ENSL Only
Two heuristics for coalescing safely:
Briggs Nodes a and b can be coalesced if the resulting node ab will have fewer than
K neighbors of high degree (i.e., degree > K edges)
George Nodes a and b can be coalesced if, for every neighbor ¢ of a, either ¢ already
interferes with b, or ¢ is of low degree.

32/86



Register Allocation with graph coloring Spilling strategies

lterative Register Coalescing — Spilling ENSL Only
» How to choose which variables to spill ? This is actually really hard:

@ We want to spill variables that are less used dynamically

@ We only have static information

We can use a heuiristic:

SPILLCOST(v)
cost =0
foreach definition or use in block B
cost += 10N/D, where
N is B’s loop nesting factor
D is v's degree in the interference graph

33/86



Register Allocation with graph coloring Spilling strategies

Other Algorithms

@ Linear scan: greedy coloring of interval graphs. (see Fernando Pereira’s
slides on register allocation: 18 to 35)

@ Plenty of other heuristics for spilling.

34/86



Register Allocation on SSA

o Properties in SSA: Liveness
9 Register Allocation with graph coloring
e Register Allocation on SSA

@ Chordal graphs

@ Decoupled Register allocation

@ SSA exit with windmills

0 LAB : smart code Generation

35/86



Register Allocation on SSA

Liveness: SSA still to the rescue

Xy l—42+b1
‘ || Yo~
Xy
X3 — p(x1, %)
ye ol )
. return xz+ 33+ P,

Live range with SSA

Live range on a CFG

36/86



Register Allocation on SSA

The Example's Interference Graph

1) How many registers do we
need, if we want to compile
this program without
spilling?

2) How this example would
look like in SSA-form?

37/86



Register Allocation on SSA

Example in SSA form

Can you run a liveness
analysis algorithm on
this program?

(o]
e
L]

=b (cy, c,)
=} (e, e,)

=e, C

38/86



Register Allocation on SSA

Example in SSA form

Ia='l {a}=d=0|

How is the interference
graph of this example?

{c €}

{Czr e2}

D St M

e =¢ (e;r €,)

39/86



Register Allocation on SSA

Example in SSA form

What's the chromatic

number of this graph? Ia - o }&,{d - o I

>—O—O e

) et el
D St M

e =¢ (ell ez)

40/86



Register All

- r

B @l @ﬂ

©

ocation on SSA

MinReg = MaxLive

We shall talk more about it!

This result is no coincidence.

|a:r2 =

° |—>|d:rl

But we still have a very serious
problem: how can we translate
these phi-functions to

register allocation?

e, :r2 = a:

r2

c:rl =¢ (c,:rl,
e:r2 =¢ (e,:r2,

c,:r2)

e,:rl)

41/86



Register Allocation on SSA

SSA-Based Register Allocation

* SSA-based register allocation is a technique to perform
register allocation in SSA-form programs.
— Simpler algorithm.
* Decoupling of spilling and register assignment
— Less spilling.
* Smaller live ranges

* Polynomial time minimum register assignment

Traditional Register Allocation

Source SSA SSA-form SSA Post-SSA Register Executable
Program Convertion Program Elimination Program Allocation Program

SSA-Based Register Allocation

Source SSA SSA-form Register Cloloril SSA Executable
—_— - SSA-form: —
Program Convertion Program Allocation Prosmm Elimination Program

42/86



Register Allocation on SSA Chordal graphs

e Register Allocation on SSA
@ Chordal graphs

43/86



Register Allocation on SSA Chordal graphs

An appeal to simplicity

For certain classes of graphs, graph coloring is P!

Chordal graphs
chordal graphs are graphs where every cycle with 4 or more edges has a chord
(connects 2 vertices in the cycle but not part of the cycle).

44/86



Register Allocation on SSA Chordal graphs

An appeal to simplicity

For certain classes of graphs, graph coloring is P!

Chordal graphs
chordal graphs are graphs where every cycle with 4 or more edges has a chord
(connects 2 vertices in the cycle but not part of the cycle).

Theorem
The greedy coloring algorithm (with a judiciously chosen ordering) is exact on

chordal graphs and takes polynomial time

» Also means computing the chromatic number of a graph is easy!

44/86



Register Allocation on SSA Chordal graphs

An alternative definition of Chordality

Definition: Induced subgraph

If G =(V,E)is agraph, then S = (V' E’) is an
induced subgraph of G if V! ¢ V, and

(vi,vj) € E"if, and only if, (v;,v;) € E.

Theorem: Triangular graphs are chordal

A graph is Chordal if, and only if, it has no
induced subgraphs isomorphic to C,,, where C,,
is the cycle with n nodes, n > 3.

(a)

(c)

Which graphs are chordal ?

(b)

(d

45/86



Register Allocation on SSA Chordal graphs

Intersection Graphs

* IfSis a set of sets, then we define an intersection graph
G =(V, E) as follows:
— Foreachsets € S, we have a vertexv € V

— Ifsy, s, €S,and s, N s, #{}, then we have an edge (v,, v,)
EE

{ {b, c, £, i}

{a, b, e},
{a, c, d, f},
{b, c, f,i},
{a, h}, 1d, i}
{f,h, i},
{C’ e’ g}’
{d, i}
} {a,c,d, 1}

{f, h, i}

{a, h} ——{a, b, e}

{c. e, g}

46/86



Register Allocation on SSA Chordal graphs

PPGCC
= e

Chordal Graphs

* The intersection graph of subtrees The interference graph of
f . hordal h programs in SSA form is
ot atreeisachoraa graph. chordal. Any intuition on

why?

N

47/86



Register Allocation on SSA Chordal graphs

PPGCC

Dominance Trees

=P (e, &) Can you draw the live
ranges of the

variables on the left?
ds:® = e, ¢ ds:® = e, ¢

48/86



Register Allocation on SSA Chordal graphs

c, I
c,
d
e,
e, I—
C I

e

“: Allocation de Registres et Vidage en Memoire, 2005

Dominance Trees

The interference graph of a
SSA-form program is the
intersection graph of the live
ranges of the variables on
the dominance tree®.

49/86



Register Allocation on SSA Chordal graphs

Intersection Graph of Live Ranges

I
El c = (c;, c,)

e =¢ (e, e))

50/86



Register Allocation on SSA Chordal graphs

Chordality and SSA

Theorem
The interference graph of an SSA-form program is chordal J

“Interference Graphs of Programs in SSA-form” by Sebastian Hack
» We can use this to simplify our register allocation algorithm

51/86



Register Allocation on SSA Decoupled Register allocation

© Register Allocation on SSA

@ Decoupled Register allocation

52/86



Register Allocation on SSA Decoupled Register allocation

Liveness and Domination

In SSA, live ranges must follow the domination tree.

This gives us a nice property:

Theorem: Max Live = Max Clique

Let P be an SSA-form program, and G = (V, E) be its interference graph. For
each clique C = zy,...,x, in G there exists a program point in P, where all the
variables ¢; interfere.

A clique is a (sub)graph that is “fully connected”.

53/86



Register Allocation on SSA Decoupled Register allocation

Decoupled Spilling

* Because the maximum clique of the interference graph
equals the minimum number of registers necessary to
compile the program, we can lower register pressure
until MaxLive = K, and just then we perform register
assignment.

* This technique is called the decoupled approach to
register allocation.

— First we spill
— Then we do register assignment

* As we have already seen, there exist an exact, polynomial
time, algorithm to find out the chromatic number of a
chordal graph.

54/86



Register Allocation on SSA Decoupled Register allocation

Decoupled Spilling

* The possibility of being able to spill, until we reach a

colorable graph, gives us the opportunity to try many
different algorithmic designs.

* Below we show the design used in the first register
allocator based on the coloring of chordal graphs®:

build ——sMaxClique Spill color coalesce SSA Elim

I |

What do you think @
is the work of each
of these phases?

©: Register Allocation via the Coloring of Chordal Graphs (2005)

55/86



Register Allocation on SSA Decoupled Register allocation

Build

* In the build phase we produce an interference graph out
of liveness analysis.

: e = R2

P
N

= R
= Rl, R2
T1
R4 = T7
T8 = R2 * R4
R5 = T8
T9 = R1, R5
R6 = T9
R1 = R2
R2 = R6

build MaxClique Spill color coalesce SSA Elim

56/86



Register Allocation on SSA Decoupled Register allocation

MaxClique
In the MaxClique phase we try to find cliques with more than K

nodes in the interference graph, where K is the maximum number

of available registers. G=T7,R1,R2, T1, R5, R4, T8, R6, TO

build —{MaxClique Spill color coalesce SSA Elim
l ! | ®

57/86



Register Allocation on SSA Decoupled Register allocation

Spill

* If we have cliques with more than K nodes, then we must
choose a few of these nodes to spill.

* The problem of finding the minimum number of nodes to
spill, so that we get a K colorable graph is NP-complete®.

1) How do we choose
which node to spills?

2) In this example, we

have a clique of four R
nodes. If we have only Efé - f;; * R4
three registers, which T9 = R1, RS
. R6 = T9
node do we spill? R1 - Ro

build ——sMaxClique Spl, color coalesce SSA Elim

Ul

“: The Maximum k-Colorable Subgraph Problem for Chordal Graphs (1987)
58/86



Register Allocation on SSA Decoupled Register allocation

Spill

We can use the same formula that we have
used in the design of Iterated Register
Coalescing (Remember last class?) to
compute spill costs. This formula takes into
consideration the program, and the structure
of its interference graph.

==
Which variable
should we spill in
Spill_Cost(v) this example? =
cost=0 o
foreach definition at block B, or use at block B R4 = T7
cost = (Z (Spx10N))/D, where we g
Sg is the number of uses and defs at B TR
N is B's loop nesting factor Rl = R2
D is v's degree in the interference graph 22 C RS

59/86



Register Allocation on SSA Decoupled Register allocation

Spill
Node Formula | Spilling Cost
T7 (2*10)/3 6.66
R1 (1+1+3%10)/7 457
R2 (1+1+5%10)/8 6.5
T1 (2*10)/3 6.66
Which variable
should we spill in
Spill_Cost(v) this example?
cost=0
foreach definition at block B, or use at block B R4 =17
cost = (£ (Sgx10M)/D, where we g
Sg is the number of uses and defs at B TR
N is B's loop nesting factor Rl = R2
D is v's degree in the interference graph 22 C RS

60/86



Register Allocation on SSA Decoupled Register allocation

Rebuild

* Once we spill, we must insert loads and stores in the
code, to preserve the semantics of the original program.

* After scattering loads and stores around, we rebuild the
interference graph.

[z
RE = ldml ]| |[gg = 1d m1
e = RE T7 = RB, R2

22 |
= ¢ =Tl
_ R, R2 R4 = T7
e =11 T8 = R2 * R4
R4 = T7 RS = T8
T8 = R2 * R4 [Re = 1d m1 |
RS = T8 TS = RC, RS
TR RS How will the interference N
Rl = R2 graph of the new [st RD m1 |
R2 = R6 program look like? R2 = R6

61/86



Register Allocation on SSA Decoupled Register allocation

Rebuild

* Once we spill, we must insert loads and stores in the
code, to preserve the semantics of the original program.

* After scattering loads and stores around, we rebuild the
interference graph.

RA = @
[st RA ml | e = RZ |
I
R2 = e —
TL =
RE = 1d ml [RB = 1d m
e = RE T7 = RB, R2
e = T1
R4 = T7
T8 = R2 * R4
R5 = T8
[Re = 1d m1 |
. TS = RC, RS
Is this graph R6 = TO
3-colorable? RD = R2
‘st RD ml ‘
R2 = R6

62/86



Register Allocation on SSA Decoupled Register allocation

Register Assignment
* Once we are down to a
chordal graph whose largest @
clique has no more than K A
nodes, we are guaranteed to
find a K-coloring to it.

* To find this coloring, we simply \
apply the greedy coloring on

the simplicial elimination ‘ @

ordering that we obtain.

build —>MaxClique—>Spillcoalesce—>SSA Elim

J! ' :

63/86



Register Allocation on SSA Decoupled Register allocation

Register Assignment

6=R4,R2,R6,T9, T8, T7, T1, RB, R5,
Now, assuming that we RC, RD, RA, RE,

have three colors, what do
we get when we apply -

greed coloring on this o? I:I

64/86



Register Allocation on SSA Decoupled Register allocation

Register Assignment

How can we map this
coloring into a valid
register assignment in our
original program?

6=R4,R2,R6,T9, T8, T7, T1, RB, R5,
- RC, RD, RA, RE,

T Z

R d ml
T RB, R2
e = T1

R4 = T7

T8 = R2 * R4
R5 = T8

RC = 1d ml
T9 = RC, R5
R6 = T9

RD = R2

st RD ml

R2 = R6

65/86



Register Allocation on SSA Decoupled Register allocation

Register Assignment

1) We have been lucky: all
the coalescible nodes have
been coalesced. Actually,
the greedy coloring helps
coalescing a little bit. Why?

2) Can you think
about a simple

coalescing strategy
to our algorithm?

rl = e
st rl ml o = 12

r2 = e

=1’z
= 1d ml
=rl, r2
e =13
rl = rl
rl = r2 * rl
rl = rl
r3 = 1d ml
rl = r3, rl
rl = rl
r2 = r2
st r2 ml st r2 ml
r2 = rl r2 = rl

66/86



Register Allocation on SSA Decoupled Register allocation

Best Effort Coalescing

* Because we have K colors to play with, some of them
may end up not being used in some neighborhood of the
interference graph.

* We can use these extra colors to maximize the amount of
copy instructions that we can coalesce away.

1) How likely are we 2) This coalescing

to have an unused technique is rather
color in some simple. Can you
neighborhood of the think about anything
interference graph? stronger?

build —s>MaxClique—s>Spill —>colorSSA Elim

J! ' :

67/86



Register Allocation on SSA Decoupled Register allocation

Best Effort Coalescing

Best Effort Coalescing
input: list L of copy instructions, G = (V, E), K
output: G, the coalesced graph G

G'=G What is the
forallx=y € Ldo complexity of
let S, be the set of colors in N(x) this algorithm?

let S, be the set of colors in N(y)
if 3c,c<K,cé¢S,U S, then
let xy, xy € V be a new node in
add xy to G' with color ¢
make xy adjacent to every v, v € N(x) U N(y)
replace occurrences of x or y in L by xy
remove x from G'
remove y from G'

68/86



Register Allocation on SSA SSA exit with windmills

e Register Allocation on SSA

@ SSA exit with windmills

69/86



Register All

- r

B @l @ﬂ

©

ocation on SSA

MinReg = MaxLive

SSA exit with windmills

We shall talk more about it!

This result is no coincidence.

|a:r2 =

@t

But we still have a very serious
problem: how can we translate
these phi-functions to

register allocation?

e, :r2 = a:

r2

c:rl =¢ (c,:rl,
e:r2 =¢ (e,:r2,

c,:r2)

e,:rl)

70/86



Register Allocation on SSA SSA exit with windmills

Swaps

[}
.
o
'ri
—

1]
.

We need to copy the contents of [a:r2
e, to e. Similarly, we need to copy
¢, to c. But these variables have
been allocated to different
registers. If we have a third
register to spare, we could do a

swap like:
tmp = rl
rl = r2 e,:rl = b:rl
r2 = tmp swap(rl, r2)

Yet, we may not have this register.

c:rl =¢ (c,:rl, c,:r2)

1) What is the 2) Is it possible to e:r2 =d (e,:r2, e,:rl)
problem of implement swaps

separating a register without sparing a

to do the swaps? temporary register?

71/86



Register Allocation on SSA

SSA exit with windmills

Swaps
e,:rl, c,:r2 = e e,:rl, c,:r2 = e e,:rl, c,:r2 = e
swap(rl, r2) tmp = rl r2 = rl ~ r2
rl = r2 rl = rl ~ r2
r2 = tmp r2 = rl "~ r2
c:rl =¢ (c;:rl, c,:r2)
e:r2 =¢ (e;:r2, e,:rl)

e = e:r2, c:rl |o

= e:r2, c:rl |

|0 = e:r2, c:rl

There are ways to implement swaps, without the need of a
temporary location. One of these ways is the well-known
hacking of using three xor operations to exchange two
integer locations. There are other ways, though. Some
architectures provide instructions to swap two registers.
The x86, for instance, provides the instruction xchg(rl, r2),
which exchanges the contents of rl and r2.

Can you think about
other ways to swap
the contents of
registers?

72/86



Register Allocation on SSA SSA exit with windmills

Implementing swaps — take 2

Problem 1: What about cycles of more than 2 variables?
Problem 2: RiscV has no swap instruction
» Back to the (theoretical) drawing board

73/86



Register Allocation on SSA SSA exit with windmills

The semantics of ¢-instructions

Sequences of ¢ instructions are peculiar: they have no order.

a:ry=¢(ay:ry,az:r2)
b: To = ¢(b1 2T2,b2 : Tl)

c:rg=¢(c1 13,09 1 72)

All the ¢ should be executed “at the same time” using parallel moves:

r1,72,7T3 :=1T2,71,72

74/86



Register Allocation on SSA SSA exit with windmills

Parallel moves

—
™ r2 — T3
Pp— —
1,172,773 1= T2,71,72

A Parallel move (s1 — d1) ... (s, — dy) is well defined if all the destinations are
disjoint: Vi #£ j,d; # dj.
» Almost a forest, but with cycles!

75/86



Register Allocation on SSA SSA exit with windmills

Windmill graphs

7 Yy
Definition m;%% 7’% e

A graph is a windmill if each vertex has -éj b

at most one predecessor. %yr\ )

Picture from “Tilting at windmills with Cog”

Theorem
The graph associated to a well defined parallel move is a windmill J

» How to cut this graph into individual moves?

76/86



Register Allocation on SSA SSA exit with windmills

Windmill graphs: easy cases

If the graph is a cycle: If the graph is a forest:

op 2
\@@ @ (rs)

=12 T4 =713
"2:=73 rs =13
"3 =74 r3i=nr
T4-=1T5 T I=T1
r5 = tmp

77186



Register Allocation on SSA

An algorithm

Sequentialize_moves(G)=
moves = []

For each vars v without successors in G:

For src in pred(v):
moves := moves + (v, src)
G := G\ {v}

For each cycle in G:

if len(cycle)
pass

else:
previous := tmp
for v in reversed(cycle):

moves := moves + (previous, v)
previous := v
moves := moves + (previous, tmp)

return moves

SSA exit with windmills

Start from the leaves

Remove all the easy moves
until there are no more leaves

Only cycles remains

Eliminate 1-cycles

© 00

Use an extra register to handle the
cycles

78/86



Register Allocation on SSA SSA exit with windmills

So, in the end we get...

=$ (¢, c)
=b (e;, &)

= e, C

79/86



LAB : smart code Generation

@ Properties in SSA: Liveness
9 Register Allocation with graph coloring
© Register Allocation on SSA

© LAB : smart code Generation

80/86



LAB : smart code Generation

Smart Code Generation

Input: a MiniC file:

int n;
n=6;

Output: a RISCYV file:

1 ;7 (stat (assignment n = (expr (atom 6)) ;))
2 1i t6, 6
3 mv t7, t6

» but with a smart allocation of registers and memory.

81/86



LAB : smart code Generation

Smart Code Generation

. LinearCode
Parsing

Reg. Alloc.

N\

Liveness

@ Previous labs
Q Lab TP5a
© Lab TP5b

82/86



LAB : smart code Generation

Smart Code Generation — More details

@ Implement Liveness on SSA
@ Naive coloring/spilling strategy

@ Color with an infinite number of colors
@ Spill everything that doesn't fit

© No coalescing
© Naive SSA exit (with Windmills)

83/86



LAB : smart code Generation

Summary

0 Properties in SSA: Liveness

9 Register Allocation with graph coloring
@ Conflict (Interference) Graph
@ Coloring
@ Spilling strategies

e Register Allocation on SSA
@ Chordal graphs
@ Decoupled Register allocation
@ SSA exit with windmills

© LAB : smart code Generation

Follow up: language extensions, SSA optimisations

84/86



Exercise — Liveness and Allocation — Straight line code

LAB : smart code Generation

We consider the following program:

int x,y,z,t;

x=12; y=3+X; Z=4+y; t:x-y+z;

2]

Compute the live-out at each
instruction

Draw and color the interference
graph

Do the register allocation with 2
registers

Generate the final code

With ¢, z,y,x — tmp_0,tmp_1,tmp_2,.tmp_3,

we obtain:

1+ 11 tmp_4, 12

amv tmp_3, tmp_4

31i tmp_5, 3

4 add tmp_6, tmp_5, tmp_3
s5mv tmp_2, tmp_6

6 i tmp_7, 4

7add tmp_8, tmp_7, tmp_2
gmv tmp_1, tmp_8

9 sub tmp_9, tmp_3, tmp_2
10 add tmp_10, tmp_9, tmp_1
11 mv tmp_0, tmp_10

85/86



LAB : smart code Generation

Exercise — Liveness and Allocation — CFG

We consider the program on the right

2]

Compute the live-out at each
instruction

Draw and color the interference
graph

Do the register allocation with 2
registers

Generate the final code

entry

li temp_1, 6
li temp_2, 0

temp_3 = @({entry: temp_9, loop: temp_1})
temp_4 = @({entry: temp_10, loop: temp_2})

ble temp 3, temp 5, cond

while

li temp_5, 1
li temp_6, 0

cond

1 temp 7,1

relatlonal

temp_8 = @({cond: temp_7,

beq temp_8, zero, loop

while: temp_6})

!

exit loop
mv a0, temp_4 subi temp_9, temp_3, 1
call println_int add temp_10, temp_4, temp_9

86/86



	Properties in SSA: Liveness
	Register Allocation with graph coloring
	Register Allocation on SSA
	LAB : smart code Generation

