
Compilation (#7):
Register Allocation on SSA

Laure Gonnord & Matthieu Moy & Gabriel Radanne & other

Master 1, ENS de Lyon et Dpt Info, Lyon1

2024-2025

Where are we?

LinearCode
Lexing
Parsing

TargetCFG

SSA

Allocation

Laure Gonnord & Matthieu Moy & Gabriel Radanne & other (M1 - Lyon1 & ENSL)Compilation (#7):(CAP) Register Alloc on SSA 2024-2025 ↞ 2 / 86 ↠

Properties in SSA: Liveness

1 Properties in SSA: Liveness

2 Register Allocation with graph coloring

3 Register Allocation on SSA

4 LAB : smart code Generation

Laure Gonnord & Matthieu Moy & Gabriel Radanne & other (M1 - Lyon1 & ENSL)Compilation (#7):(CAP) Register Alloc on SSA 2024-2025 ↞ 3 / 86 ↠

Properties in SSA: Liveness

Liveness: Recap

Liveness is essential for many optimization, notably register allocation.

Definition (Alive Variable)
In a given program point, a variable is said to be alive if the value it contains may
be used in the rest of the execution.

Laure Gonnord & Matthieu Moy & Gabriel Radanne & other (M1 - Lyon1 & ENSL)Compilation (#7):(CAP) Register Alloc on SSA 2024-2025 ↞ 4 / 86 ↠

Properties in SSA: Liveness

Liveness: SSA to the rescue

Live range on a CFG
Live range with SSA

Laure Gonnord & Matthieu Moy & Gabriel Radanne & other (M1 - Lyon1 & ENSL)Compilation (#7):(CAP) Register Alloc on SSA 2024-2025 ↞ 5 / 86 ↠

Liveness	Analysis	in	SSA	Form	Programs	

•  The	problem	of	determining	the	program	points	along	
which	a	variable	is	alive	has	a	simple	soluAon	for	SSA	
form	programs.	

For each statement S in the program:
 IN[S] = OUT[S] = {}

For each variable v in the program:
 For each statement S that uses v:
 live(S, v)

live(S, v):
 IN[S] = IN[S] ∪ {v}
 For each P in pred(S):
 OUT[P] = OUT[P] ∪ {v}
 if P does not define v
 live(P, v)

Can	you	point	
where	i2	is	alive	
in	this	program?	

 i1 = ϕ(i0, i4)
L1: if i1 > 10 goto L7

L2: i2 = i1 + 1
 3: if i2 < 20 goto L5

L0: i0 = 1

L4: i3 = i2 + 2

L7: ret i1

L5: goto L6

 i4 = ϕ(i3, i2)
L6: goto L1

Properties in SSA: Liveness

6 / 86

Liveness	Analysis	in	SSA	Form	Programs	

The	points	where	i2	is	alive	
have	been	marked	with	red	
rectangles.	

Tricky	quesAon:	
is	i2	alive	

somewhere	
within	block	L6?	

 i1 = ϕ(i0, i4)
L1: if i1 > 10 goto L7

L2: i2 = i1 + 1
 3: if i2 < 20 goto L5

L0: i0 = 1

L4: i3 = i2 + 2

L7: ret i1

L5: goto L6

 i4 = ϕ(i3, i2)
L6: goto L1

Properties in SSA: Liveness

7 / 86

Liveness	Analysis	in	SSA	Form	Programs	

The	answer	for	the	
tricky	quesAon	is	NO.	
Uses	of	variables	in	phi-
funcAons	are	
considered	in	a	
different	way.	The	
variable	is	effecAvely	
used	in	the	OUT	set	of	
the	predecessor	block	
where	its	definiAon	
comes	from.	In	other	
words,	i2	is	alive	at	
OUT[L5],	but	is	not	alive	
at	IN[L6].	

Could	i2	and	i3	be	
allocated	into	
the	same	

memory	space?	

 i1 = ϕ(i0, i4)
L1: if i1 > 10 goto L7

L2: i2 = i1 + 1
 3: if i2 < 20 goto L5

L0: i0 = 1

L4: i3 = i2 + 2

L7: ret i1

L5: goto L6

 i4 = ϕ(i3, i2)
L6: goto L1

Properties in SSA: Liveness

8 / 86

Liveness	Analysis	in	SSA	Form	Programs	

Why	can	we	solve	liveness	
analysis	for	SSA	form	

programs	without	having	
to	iterate	through	a	fixed	

point	algorithm?	

♧:	NoAce	that	phi-funcAons	should	be	handled	in	a	different	way.	Do	you	know	why	and	how?	

For each statement S in the program:
 IN[S] = OUT[S] = {}

For each variable v in the program:
 For each statement S that uses v:
 live(S, v)

live(S, v):
 IN[S] = IN[S] ∪ {v}
 For each P in pred(S):
 OUT[P] = OUT[P] ∪ {v}
 if P does not define v
 live(P, v)

Properties in SSA: Liveness

9 / 86

Liveness	Analysis	in	SSA	Form	Programs	

• = x • = x

x = •
Our	algorithm	works	due	to	the	key	
property	of	SSA	form	programs:	every	
use	of	a	variable	v	is	dominated	by	the	
definiAon	of	v.	Thus,	we	can	traverse	the	
CFG	of	the	program,	starAng	from	the	
uses	of	a	variable,	unAl	we	stop	at	its	
definiAon.	We	are	certain	to	stop,	
because	of	the	key	property.	Otherwise,	
the	variable	is	used	without	being	
defined.	In	this	case,	we	will	reach	the	
root	node	of	the	CFG,	and	we	assume	
that	the	variable	is	alive	at	the	input	of	
the	program.	

Properties in SSA: Liveness

10 / 86

Register Allocation with graph coloring

1 Properties in SSA: Liveness

2 Register Allocation with graph coloring
Conflict (Interference) Graph
Coloring
Spilling strategies

3 Register Allocation on SSA

4 LAB : smart code Generation

11 / 86

Register Allocation with graph coloring Conflict (Interference) Graph

2 Register Allocation with graph coloring
Conflict (Interference) Graph
Coloring
Spilling strategies

12 / 86

Register Allocation with graph coloring Conflict (Interference) Graph

Step 2: Interferences

Here is the output of the liveness analysis for a+ (b+ c):

tmp1 tmp2 tmp3 tmp4 tmp5 tmp6

load tmp1,la

load tmp2,lb

load tmp3,lc

ADD tmp4, tmp2, tmp3

MV tmp5, tmp4

ADD tmp6, tmp1, tmp5

...

▶ tmp1 is in conflict with tmp2 (because of instruction 3) denoted by tmp1 ▷◁ tmp2.

13 / 86

Register Allocation with graph coloring Conflict (Interference) Graph

Interference graph
The relation ▷◁ defines a conflict/interference graph:

tmp1

tmp4
tmp2

tmp5

tmp3

We want a correct allocation with respect to ▷◁:
tmp1 ▷◁ tmp2 =⇒ Alloc(tmp1) ̸= Alloc(tmp2).

▶ Graph coloring.
14 / 86

Register Allocation with graph coloring Conflict (Interference) Graph

Live variables and Minimum registers

tmp1 tmp2 tmp3 tmp4 tmp5 tmp6

load tmp1,la

load tmp2,lb

load tmp3,lc

ADD tmp4, tmp2, tmp3

LETI tmp5, tmp4

ADD tmp6, tmp1, tmp5

...

How many variables are live at the same point ?
How many registers do we need ?

15 / 86

Register Allocation with graph coloring Conflict (Interference) Graph

MinReg vs MaxLive : A pathological example

Definition: MaxLive
The maximum number of registers that are
simultaneously alive at any program point of the
program’s control flow graph

Definition: MinReg
The minimum number of registers that a program
needs

The difference is strict! There exists programs such
that MinReg > MaxLive
▶ Let’s try on this example

16 / 86

Register Allocation with graph coloring Conflict (Interference) Graph

Running example

Important: in this example consider the ri as temporary registers, like the
others.

Dashed edges represent moves!

17 / 86

Register Allocation with graph coloring Conflict (Interference) Graph

Running example

Important: in this example consider the ri as temporary registers, like the
others.

Let’s look at the graph without
moves first

17 / 86

Register Allocation with graph coloring Coloring

2 Register Allocation with graph coloring
Conflict (Interference) Graph
Coloring
Spilling strategies

18 / 86

Register Allocation with graph coloring Coloring

Kempe’s simplification algorithm 1/2

On the interference graph (without coalesce edges):

Proposition (Kempe 1879)
Suppose the graph contains a node m with fewer than K neighbours. Then if
G′ = G \ {m} can be K-colored, then G can be K-colored as well.

▶ Pick a low degree node, and remove it, and continue until remove all (the graph
is K-colorable) or . . .

19 / 86

Register Allocation with graph coloring Coloring

Kempe’s simplification algorithm 2/2

20 / 86

Register Allocation with graph coloring Coloring

Let’s color! (“Kempe’s heuristic”)
We assign colors to the nodes greedily, in the reverse order in which nodes
are removed from the graph.

The color of the next node is the first color that is available, i.e. not used by
any neighbour.

21 / 86

Register Allocation with graph coloring Coloring

Greedy coloring example 1/2

22 / 86

Register Allocation with graph coloring Coloring

Greedy coloring example 2/2

23 / 86

Register Allocation with graph coloring Coloring

On the number of colors (K)

In the last example, we chose K=4, and this is nice, because the graph is
4-colorable.

The given heuristic may fail to color the graph with K colors: it doesn’t mean
that the graph is not K-colorable (heuristic!).

We can choose:
either to eliminate the “non-colorable node” of the graph and continue with the
other nodes inside the node stack.
either to increment the K parameter.

24 / 86

Register Allocation with graph coloring Spilling strategies

2 Register Allocation with graph coloring
Conflict (Interference) Graph
Coloring
Spilling strategies

25 / 86

Register Allocation with graph coloring Spilling strategies

Recall memories - Final code generation

With a 3 address code + allocation, rewrite each 3 address instruction into “real
code”:

Each temporary is rewritten into its allocated physical register.

If the temporary is in memory (Spilling), we generate code with appropriate
loads and stores.

26 / 86

Register Allocation with graph coloring Spilling strategies

If the graph was not successfully colored

Non-colored variables1 are named spilled temporaries.
There are many solutions to handle spilled variables.

1either not colored at all or colored with number >K
27 / 86

Register Allocation with graph coloring Spilling strategies

A naive solution: also color memory!

Launch the coloration algorithm with an infinite number of colors:
first colors are mapped to registers (used in priority by the coloring algorithm)
other colors are mapped to offsets in the stack, i.e. spilled to memory

Drawback: we need a few registers to implement the spilling

add temp1, temp2, temp3 ⇒

ld s0, [locationfortemp2]

ld s1, [locationfortemp3]

add s2, s0, s1

sd s2, [locationfortemp1]

(Still OK for us in practice)

28 / 86

Register Allocation with graph coloring Spilling strategies

More sophisticated: Live range splitting

Idea: Modify the code to lower the number of simultaneously alive registers.
Invent 2 versions of the same variable (live-range splitting), and modify the code
into:

ADD temp51, temp4, temp3

STORE temp51, [locationinmemory] # replace with actual location

..

LOAD temp52, [locationinmemory] #same

ADD temp6, temp52, #5

▶ But now we have to allocate these two new variables!

We relaunch the coloring algorithm. This is called Iterative Register Allocation.

29 / 86

Register Allocation with graph coloring Spilling strategies

To go further: Iterative Register Coalescing2 ENSL Only

Two new optimizations to improve register allocation further

1 Register coalescing

2 Clever spilling

An iterative algorithm with many steps:

2Iterated Register Coalescing, TOPLAS (1996)
30 / 86

Register Allocation with graph coloring Spilling strategies

Iterative Register Coalescing – Coalescing ENSL Only
Coalescing consists of collapsing two move related nodes together (dashed lines
= move instructions)

Which variables can be coalesced without causing spills ?
31 / 86

Register Allocation with graph coloring Spilling strategies

Iterative Register Coalescing – Coalescing ENSL Only
Two heuristics for coalescing safely:

Briggs Nodes a and b can be coalesced if the resulting node ab will have fewer than
K neighbors of high degree (i.e., degree ⩾ K edges)

George Nodes a and b can be coalesced if, for every neighbor t of a, either t already
interferes with b, or t is of low degree.

32 / 86

Register Allocation with graph coloring Spilling strategies

Iterative Register Coalescing – Spilling ENSL Only

▶ How to choose which variables to spill ? This is actually really hard:

We want to spill variables that are less used dynamically

We only have static information

We can use a heuristic:

SPILLCOST(v)

cost = 0

foreach definition or use in block B

cost += 10N/D, where

N is B’s loop nesting factor

D is v’s degree in the interference graph

33 / 86

Register Allocation with graph coloring Spilling strategies

Other Algorithms

Linear scan: greedy coloring of interval graphs. (see Fernando Pereira’s
slides on register allocation: 18 to 35)

Plenty of other heuristics for spilling.

34 / 86

Register Allocation on SSA

1 Properties in SSA: Liveness

2 Register Allocation with graph coloring

3 Register Allocation on SSA
Chordal graphs
Decoupled Register allocation
SSA exit with windmills

4 LAB : smart code Generation

35 / 86

Register Allocation on SSA

Liveness: SSA still to the rescue

Live range on a CFG
Live range with SSA

36 / 86

D1."*+%,)-.E0"F9$.&;.&.98."G&%)1"

a = !

d = !

e = a

c = d

b = !

c = a

e = b

! = e, c

{c, e}

{d, e}

{c, e}

{a, d}

{b, c}

{a, b}

{a}

{a}

b

a

c

e

d

=>! B3C",%9?"&.720$.&0"63"C."

9..6<"2;"C."C%9$"$3"83,)2-."

$120")&37&%,"C2$13($"

0)2--297@"

A>! B3C"$120".+%,)-."C3(-6"

-33H"-2H."29"##!';3&,@"

Register Allocation on SSA

37 / 86

*+%,)-."29"##!";3&,"

a = !

d = !

e1 = a

c1 = d

b = !

c2 = a

e2 = b

c =" (c1, c2)

e =" (e1, e2)

! = e, c

I%9"?3("&(9"%"-24.9.00"

%9%-?020"%-73&2$1,"39"

$120")&37&%,@"

Register Allocation on SSA

38 / 86

*+%,)-."29"##!";3&,"

B3C"20"$1."29$.&;.&.98."

7&%)1"3;"$120".+%,)-.@"

a = ! d = !

e1 = a

c1 = d

b = !

c2 = a

e2 = b

c =" (c1, c2)

e =" (e1, e2)

{a}

{a, d}
{a}

{a, b}

{c2, b}

{c2, e2}

{d, e1}

{c1, e1}

! = e, c
{c, e}

Register Allocation on SSA

39 / 86

*+%,)-."29"##!";3&,"

a = ! d = !

e1 = a

c1 = d

b = !

c2 = a

e2 = b

c =" (c1, c2)

e =" (e1, e2)

{a}

{a, d}
{a}

{a, b}

{c2, b}

{c2, e2}

{d, e1}

{c1, e1}

! = e, c
{c, e}

d

a

e1

c2b

c1

e2c e

/1%$E0"$1."81&3,%$28"

9(,5.&"3;"$120"7&%)1@"

Register Allocation on SSA

40 / 86

J29K.7"L"J%+M24."

d

a

e1

c2b

c1

e2c e

r2 r1r1

r1 r2r2

r2 r1r1

a:r2 = ! d:r1 = !

e1:r2 = a:r2

c1:r1 = d:r1

b:r1 = !

c2:r2 = a:r2

e2:r1 = b:r1

c:r1 =" (c1:r1, c2:r2)

e:r2 =" (e1:r2, e2:r1)

! = e:r2, c:r1

N($"C."0$2--"1%4."%"4.&?"0.&23(0"

)&35-.,O"13C"8%9"C."$&%90-%$."

!"#$#%&"'()*+,!'-+$"$3"

%00.,5-?<"&.0).8$297"$1."

&.720$.&"%--38%$239@"

D120"&.0(-$"20"93"8329826.98.:"

/."01%--"$%-H",3&."%53($"2$P"

Register Allocation on SSA

41 / 86

##!'N%0.6"K.720$.&"!--38%$239"

¥! ##!'5%0.6"&.720$.&"%--38%$239"20"%"$.8192W(."$3").&;3&,"

&.720$.&"%--38%$239"29"##!';3&,")&37&%,0:"

Ð!#2,)-.&"%-73&2$1,:"

¥! \.83()-297"3;"0)2--297"%96"&.720$.&"%00279,.9$"

Ð!M.00"0)2--297:"

¥! #,%--.&"-24."&%97.0"

¥! X3-?93,2%-"$2,.",292,(,"&.720$.&"%00279,.9$"

Source
Program

SSA
Convertion

SSA-form
Program

SSA
Elimination

Post-SSA
Program

Register
Allocation

Executable
Program

Source
Program

SSA
Convertion

SSA-form
Program

Register
Allocation

Executable
Program

SSA
Elimination

Colored
SSA-form
Program

!"#$%&'(#)*+,-%./,"*0))'1#&'(

22034#.,$*+,-%./,"*0))'1#&'(

Register Allocation on SSA

42 / 86

Register Allocation on SSA Chordal graphs

3 Register Allocation on SSA
Chordal graphs
Decoupled Register allocation
SSA exit with windmills

43 / 86

Register Allocation on SSA Chordal graphs

An appeal to simplicity

For certain classes of graphs, graph coloring is P!

Chordal graphs
chordal graphs are graphs where every cycle with 4 or more edges has a chord
(connects 2 vertices in the cycle but not part of the cycle).

Theorem
The greedy coloring algorithm (with a judiciously chosen ordering) is exact on
chordal graphs and takes polynomial time

▶ Also means computing the chromatic number of a graph is easy!

44 / 86

Register Allocation on SSA Chordal graphs

An appeal to simplicity

For certain classes of graphs, graph coloring is P!

Chordal graphs
chordal graphs are graphs where every cycle with 4 or more edges has a chord
(connects 2 vertices in the cycle but not part of the cycle).

Theorem
The greedy coloring algorithm (with a judiciously chosen ordering) is exact on
chordal graphs and takes polynomial time

▶ Also means computing the chromatic number of a graph is easy!

44 / 86

Register Allocation on SSA Chordal graphs

An alternative definition of Chordality

Definition: Induced subgraph
If G = (V,E) is a graph, then S = (V ′, E′) is an
induced subgraph of G if V ′ ⊂ V , and
(vi, vj) ∈ E′ if, and only if, (vi, vj) ∈ E.

Theorem: Triangular graphs are chordal
A graph is Chordal if, and only if, it has no
induced subgraphs isomorphic to Cn, where Cn

is the cycle with n nodes, n > 3. Which graphs are chordal ?

45 / 86

F9$.&0.8$239"G&%)10"

¥! F;"#"20"%"0.$"3;"0.$0<"$1.9"C."6.;29."%9"29$.&0.8$239"7&%)1"

G"L"U_<"*>"%0";3--3C0O"

Ð!]3&".%81"0.$"0"�"#<"C."1%4."%"4.&$.+"4"�"_"

Ð! F;"0a<"0="�"#<"%96"0a"="0="b"cd<"$1.9"C."1%4."%9".67."U4a<"4=>"

�"*"

{
 {a, b, e},
 {a, c, d, f},
 {b, c, f, i},
 {a, h},
 {f, h, i},
 {c, e, g},
 {d, i}
}

{a, b, e}

{a, c, d, f}

{b, c, f, i}

{a, h}{f, h, i} {c, e, g}{d, i}

Register Allocation on SSA Chordal graphs

46 / 86

I13&6%-"G&%)10"

¥! D1."29$.&0.8$239"7&%)1"3;"0(5$&..0"

3;"%"$&.."20"%"!"#$%&'()$&*":"

D1."29$.&;.&.98."7&%)1"3;"

)&37&%,0"29"##!";3&,"20"

813&6%-:"!9?"29$(2$239"39"

C1?@"

Register Allocation on SSA Chordal graphs

47 / 86

\3,29%98."D&..0"

d0: a = !

d1: d = !

d2: e1 = a

d3: c1 = d

d4: b = !

d5: c2 = a

d6: e2 = b

c =" (c1, c2)

e =" (e1, e2)

d8: ! = e, c

d7:

d0: a = !

d1: d = !

d2: e1 = a

d3: c1 = d

d4: b = !

d5: c2 = a

d6: e2 = b

c =" (c1, c2)

e =" (e1, e2)

d8: ! = e, c

d7:

I%9"?3("6&%C"$1."-24."

&%97.0"3;"$1."

4%&2%5-.0"39"$1."-.;$@"

Register Allocation on SSA Chordal graphs

48 / 86

\3,29%98."D&..0"

a = !

d = !

e1 = a

c1 = d

b = !

c2 = a

e2 = b
c =" (c1, c2)

e =" (e1, e2)

! = e, c

a

b

c1

c2

d

e1

e2

c

e

D1."29$.&;.&.98."7&%)1"3;"%"

##!';3&,")&37&%,"20"$1."

29$.&0.8$239"7&%)1"3;"$1."-24."

&%97.0"3;"$1."4%&2%5-.0"39"

$1."63,29%98."$&..�:"

�O"!--38%$239"6."K.720$&.0".$"_26%7.".9"J.,32&.<"Aaaf"

Register Allocation on SSA Chordal graphs

49 / 86

F9$.&0.8$239"G&%)1"3;"M24."K%97.0"

a = !

d = !

e1 = a

c1 = d

b = !

c2 = a

e2 = b
c =" (c1, c2)

e =" (e1, e2)

! = e, c

b

a

c
1

e
1

d

c
2

e
2

e c

Register Allocation on SSA Chordal graphs

50 / 86

Register Allocation on SSA Chordal graphs

Chordality and SSA

Theorem
The interference graph of an SSA-form program is chordal

“Interference Graphs of Programs in SSA-form” by Sebastian Hack
▶ We can use this to simplify our register allocation algorithm

51 / 86

Register Allocation on SSA Decoupled Register allocation

3 Register Allocation on SSA
Chordal graphs
Decoupled Register allocation
SSA exit with windmills

52 / 86

Register Allocation on SSA Decoupled Register allocation

Liveness and Domination

In SSA, live ranges must follow the domination tree.
This gives us a nice property:

Theorem: Max Live = Max Clique
Let P be an SSA-form program, and G = (V,E) be its interference graph. For
each clique C = x1, . . . , xn in G there exists a program point in P, where all the
variables ci interfere.

A clique is a (sub)graph that is “fully connected”.

53 / 86

\.83()-.6"#)2--297"

¥! N.8%(0."$1.",%+2,(,"8-2W(."3;"$1."29$.&;.&.98."7&%)1"

.W(%-0"$1.",292,(,"9(,5.&"3;"&.720$.&0"9.8.00%&?"$3"

83,)2-."$1.")&37&%,<"C."8%9"-3C.&"&.720$.&")&.00(&."

(9$2-"J%+M24."L"t<"%96"h(0$"$1.9"C.").&;3&,"&.720$.&"

%00279,.9$:"

¥! D120"$.8192W(."20"8%--.6"$1."%6!#1*'6%(&**$#&!""$3"

&.720$.&"%--38%$239:"

Ð!]2&0$"C."0)2--"

Ð!D1.9"C."63"&.720$.&"%00279,.9$"

¥! !0"C."1%4."%-&.%6?"0..9<"$1.&.".+20$"%9".+%8$<")3-?93,2%-"

$2,.<"%-73&2$1,"$3";296"3($"$1."81&3,%$28"9(,5.&"3;"%"

813&6%-"7&%)1:"

Register Allocation on SSA Decoupled Register allocation

54 / 86

\.83()-.6"#)2--297"

¥! D1.")300252-2$?"3;"5.297"%5-."$3"0)2--<"(9$2-"C."&.%81"%"

83-3&%5-."7&%)1<"724.0"(0"$1."3))3&$(92$?"$3"$&?",%9?"

62;;.&.9$"%-73&2$1,28"6.02790:"

¥! N.-3C"C."013C"$1."6.0279"(0.6"29"$1.";2&0$"&.720$.&"

%--38%$3&"5%0.6"39"$1."83-3&297"3;"813&6%-"7&%)10�O"

�O"K.720$.&"!--38%$239"42%"$1."I3-3&297"3;"I13&6%-"G&%)10"UAaaf>"

build MaxClique Spill color coalesce SSA Elim

/1%$"63"?3("$129H"

20"$1."C3&H"3;".%81"

3;"$1.0.")1%0.0@"

Register Allocation on SSA Decoupled Register allocation

55 / 86

N(2-6"

build MaxClique Spill color coalesce SSA Elim

¥! F9"$1."5(2-6")1%0."C.")&36(8."%9"29$.&;.&.98."7&%)1"3($"

3;"-24.9.00"%9%-?020:"

R1 = !

R2 = !
! = R2

T1 = R2

T7 = R1, R2

! = T1

R4 = T7

T8 = R2 * R4

R5 = T8

T9 = R1, R5

R6 = T9

R1 = R2

R2 = R6

! = R1

R2

R1

T1

T7

R4

T8

R5

T9

R6

Register Allocation on SSA Decoupled Register allocation

56 / 86

J%+I-2W(."

build MaxClique Spill color coalesce SSA Elim

¥! F9"$1."J%+I-2W(.")1%0."C."$&?"$3";296"8-2W(.0"C2$1",3&."$1%9"t"

936.0"29"$1."29$.&;.&.98."7&%)1<"C1.&."t"20"$1.",%+2,(,"9(,5.&"

3;"%4%2-%5-."&.720$.&0:"

¥! /.";296"8-2W(.0"(0297"$1."""

JI]")&38.6(&."$1%$"C.""

1%4."0..9"5.;3&.:"

B3C"8%9"C."(0."

$1."JI]",.$136"$3"

;296"8-2W(.0@"

R2

R1

T1

T7

R4

T8

R5

T9

R6

! = T7, R1, R2, T1, R5, R4, T8, R6, T9

Register Allocation on SSA Decoupled Register allocation

57 / 86

#)2--"

¥! F;"C."1%4."8-2W(.0"C2$1",3&."$1%9"t"936.0<"$1.9"C.",(0$"
81330."%";.C"3;"$1.0."936.0"$3"0)2--:"

¥! D1.")&35-.,"3;";296297"$1.",292,(,"9(,5.&"3;"936.0"$3"

0)2--<"03"$1%$"C."7.$"%"t"83-3&%5-."7&%)1"20"YX'83,)-.$.�:"

build MaxClique Spill color coalesce SSA Elim

�O"D1."J%+2,(,"H'I3-3&%5-."#(57&%)1"X&35-.,";3&"I13&6%-"G&%)10"U=ZSr>"

R2

R1

T1

T7

R4

T8

R5

T9

R6

=>! B3C"63"C."81330."

C1281"936."$3"0)2--0@"

A>! F9"$120".+%,)-.<"C."

1%4."%"8-2W(."3;";3(&"

936.0:"F;"C."1%4."39-?"

$1&.."&.720$.&0<"C1281"

936."63"C."0)2--@"

R1 = !

R2 = !
! = R2

T1 = R2

T7 = R1, R2

! = T1

R4 = T7

T8 = R2 * R4

R5 = T8

T9 = R1, R5

R6 = T9

R1 = R2

R2 = R6

! = R1

Register Allocation on SSA Decoupled Register allocation

58 / 86

#)2--"

/."8%9"(0."$1."0%,.";3&,(-%"$1%$"C."1%4."

(0.6"29"$1."6.0279"3;"F$.&%$.6"K.720$.&"

I3%-.08297"UK.,.,5.&"-%0$"8-%00@>"$3"

83,)($."0)2--"830$0:"D120";3&,(-%"$%H.0"29$3"

839026.&%$239"$1.")&37&%,<"%96"$1."0$&(8$(&."

3;"2$0"29$.&;.&.98."7&%)1:"
R2

R1

T1

T7

R4

T8

R5

T9

R6

R1 = !

R2 = !
! = R2

T1 = R2

T7 = R1, R2

! = T1

R4 = T7

T8 = R2 * R4

R5 = T8

T9 = R1, R5

R6 = T9

R1 = R2

R2 = R6

! = R1

Spill_Cost(v)

 cost = 0

 foreach definition at block B, or use at block B

 cost = (' (SB(10N))/D, where

 SB is the number of uses and defs at B

 N is B's loop nesting factor

 D is v's degree in the interference graph

/1281"4%&2%5-."

013(-6"C."0)2--"29"

$120".+%,)-.@"

Register Allocation on SSA Decoupled Register allocation

59 / 86

Spill_Cost(v)

 cost = 0

 foreach definition at block B, or use at block B

 cost = (' (SB(10N))/D, where

 SB is the number of uses and defs at B

 N is B's loop nesting factor

 D is v's degree in the interference graph

#)2--"

R2

R1

T1

T7

R4

T8

R5

T9

R6

R1 = !

R2 = !
! = R2

T1 = R2

T7 = R1, R2

! = T1

R4 = T7

T8 = R2 * R4

R5 = T8

T9 = R1, R5

R6 = T9

R1 = R2

R2 = R6

! = R1

/1281"4%&2%5-."

013(-6"C."0)2--"29"

$120".+%,)-.@"

Y36."]3&,(-%" #)2--297"I30$"

T7 UA"u"=a>"v"e" T:TT"

R1 U="k"="k"e"u"=a>"v"r" [:fr"

R2 U="k"="k"f"u"=a>"v"S" T:f"

T1 UA"u"=a>ve" T:TT"

Register Allocation on SSA Decoupled Register allocation

60 / 86

Register Allocation on SSA Decoupled Register allocation

61 / 86

RA = !

st RA m1

R2 = !

! = R2

T1 = R2

RB = ld m1

T7 = RB, R2

! = T1

R4 = T7

T8 = R2 * R4

R5 = T8

RC = ld m1

T9 = RC, R5

R6 = T9

RD = R2

st RD m1

R2 = R6

RE = ld m1

! = RE

K.5(2-6"

¥! R98."C."0)2--<"C.",(0$"290.&$"-3%60"%96"0$3&.0"29"$1."

836.<"$3")&.0.&4."$1."0.,%9$280"3;"$1."3&2729%-")&37&%,:"

¥! !;$.&"08%$$.&297"-3%60"%96"0$3&.0"%&3(96<"C."&.5(2-6"$1."

29$.&;.&.98."7&%)1:"

R2

T1

T7

R4

T8

R5

T9

R6 RARB

RC

RD

RE

F0"$120"7&%)1"

e'83-3&%5-.@"

Register Allocation on SSA Decoupled Register allocation

62 / 86

K.720$.&"!00279,.9$"

¥! R98."C."%&."63C9"$3"%"

813&6%-"7&%)1"C130."-%&7.0$"

8-2W(."1%0"93",3&."$1%9"t"

936.0<"C."%&."7(%&%9$..6"$3"

;296"%"t'83-3&297"$3"2$:"

¥! D3";296"$120"83-3&297<"C."02,)-?"

%))-?"$1."7&..6?"83-3&297"39"

$1."02,)-282%-".-2,29%$239"

3&6.&297"$1%$"C."35$%29:""

build MaxClique Spill color coalesce SSA Elim

R2

T1

T7

R4

T8

R5

T9

R6 RARB

RC

RD

RE

I%9"?3(";296"%"#*R";3&"$120"7&%)1"

(0297"3(&"JI]")&38.6(&.@"

Register Allocation on SSA Decoupled Register allocation

63 / 86

K.720$.&"!00279,.9$"

Maximum Cardinality Search

 input: G = (V, E)

 output: a simplicial elimination ordering # = v1, É, vn

 for all v � V do $(v) " 0

 for i " 1 to |V| do

 let v � V be a vertex such that �u � V, $(v) % $(u) in

 #(i) " v

 for all u � V & N(v) do $(u) " $(u) + 1

 V = V \ {v}

R2

T1

T7

R4

T8

R5

T9

R6 RARB

RC

RDRE

0

1

2
1

1

1

12

2

1

! = R4, R2, R6, T9, T8, T7, T1, RB, R5,

 RC, RD, RA, RE,

1
0 0

Y3C<"%00(,297"$1%$"C."

1%4."!"@##%,-J-@$<"C1%$"63"

C."7.$"C1.9"C."%))-?"

7&..6"83-3&297"39"$120"l@"

Register Allocation on SSA Decoupled Register allocation

64 / 86

R2

T1

T7

R4

T8

R5

T9

R6 RARB

RC

RDRE

! = R4, R2, R6, T9, T8, T7, T1, RB, R5,

 RC, RD, RA, RE,

K.720$.&"!00279,.9$"

&="

&A"

&e"

B3C"8%9"C.",%)"$120"

83-3&297"29$3"%"4%-26"

&.720$.&"%00279,.9$"29"3(&"

3&2729%-")&37&%,@"

RA = !

st RA m1

R2 = !

! = R2

T1 = R2

RB = ld m1

T7 = RB, R2

! = T1

R4 = T7

T8 = R2 * R4

R5 = T8

RC = ld m1

T9 = RC, R5

R6 = T9

RD = R2

st RD m1

R2 = R6

RE = ld m1

! = RE

Register Allocation on SSA Decoupled Register allocation

65 / 86

r1 = !

st r1 m1

r2 = !

! = r2

r3 = r2

r1 = ld m1

r1 = r1, r2

! = r3

r1 = r1

r1 = r2 * r1

r1 = r1

r3 = ld m1

r1 = r3, r1

r1 = r1

r2 = r2

st r2 m1

r2 = r1

r1 = ld m1

! = r1

r1 = !

st r1 m1

r2 = !

! = r2

r3 = r2

r1 = ld m1

r1 = r1, r2

! = r3

r1 = r2 * r1

r3 = ld m1

r1 = r3, r1

st r2 m1

r2 = r1

r1 = ld m1

! = r1

K.720$.&"!00279,.9$"

R2

T1

T7

R4

T8

R5

T9

R6 RARB

RC

RDRE

=>"/."1%4."5..9"-(8H?O"%--"

$1."83%-.0825-."936.0"1%4."

5..9"83%-.08.6:"!8$(%--?<"

$1."7&..6?"83-3&297"1.-)0"

83%-.08297"%"-2$$-."52$:"/1?@"

A>"I%9"?3("$129H"

%53($"%"02,)-."

83%-.08297"0$&%$.7?"

$3"3(&"%-73&2$1,@"

Register Allocation on SSA Decoupled Register allocation

66 / 86

N.0$"*;;3&$"I3%-.08297"

¥! N.8%(0."C."1%4."t"83-3&0"$3")-%?"C2$1<"03,."3;"$1.,"

,%?".96"()"93$"5.297"(0.6"29"03,."9.27153&1336"3;"$1."

29$.&;.&.98."7&%)1:"

¥! /."8%9"(0."$1.0.".+$&%"83-3&0"$3",%+2,2q."$1."%,3(9$"3;"

83)?"290$&(8$2390"$1%$"C."8%9"83%-.08."%C%?:"

build MaxClique Spill color coalesce SSA Elim

=>"B3C"-2H.-?"%&."C."

$3"1%4."%9"(9(0.6"

83-3&"29"03,."

9.27153&1336"3;"$1."

29$.&;.&.98."7&%)1@"

A>"D120"83%-.08297"

$.8192W(."20"&%$1.&"

02,)-.:"I%9"?3("

$129H"%53($"%9?$1297"

0$&397.&@"

e>"F;"C."H..)"81%97297"

83-3&0<"3(&"%-73&2$1,"

,%?"3082--%$."C2$13($"

$.&,29%$297:"B3C"8%9"C."

.90(&."$.&,29%$239@"

Register Allocation on SSA Decoupled Register allocation

67 / 86

N.0$"*;;3&$"I3%-.08297"

Best Effort Coalescing

 input: list L of copy instructions, G = (V, E), K

 output: G', the coalesced graph G

 G' = G

 for all x = y � L do

 let Sx be the set of colors in N(x)

 let Sy be the set of colors in N(y)

 if �c, c < K, c � Sx> Sy then

 let xy, xy � V be a new node in

 add xy to G' with color c

 make xy adjacent to every v, v � N(x) > N(y)

 replace occurrences of x or y in L by xy

 remove x from G'

 remove y from G'

/1%$"20"$1."

83,)-.+2$?"3;"

$120"%-73&2$1,@"

Register Allocation on SSA Decoupled Register allocation

68 / 86

Register Allocation on SSA SSA exit with windmills

3 Register Allocation on SSA
Chordal graphs
Decoupled Register allocation
SSA exit with windmills

69 / 86

J29K.7"L"J%+M24."

d

a

e1

c2b

c1

e2c e

r2 r1r1

r1 r2r2

r2 r1r1

a:r2 = ! d:r1 = !

e1:r2 = a:r2

c1:r1 = d:r1

b:r1 = !

c2:r2 = a:r2

e2:r1 = b:r1

c:r1 =" (c1:r1, c2:r2)

e:r2 =" (e1:r2, e2:r1)

! = e:r2, c:r1

N($"C."0$2--"1%4."%"4.&?"0.&23(0"

)&35-.,O"13C"8%9"C."$&%90-%$."

!"#$#%&"'()*+,!'-+$"$3"

%00.,5-?<"&.0).8$297"$1."

&.720$.&"%--38%$239@"

D120"&.0(-$"20"93"8329826.98.:"

/."01%--"$%-H",3&."%53($"2$P"

Register Allocation on SSA SSA exit with windmills

70 / 86

#C%)0"

a:r2 = ! d:r1 = !

e1:r2 = a:r2

c1:r1 = d:r1

b:r1 = !

c2:r2 = a:r2

e2:r1 = b:r1

swap(r1, r2)

c:r1 =" (c1:r1, c2:r2)

e:r2 =" (e1:r2, e2:r1)

! = e:r2, c:r1

/."9..6"$3"83)?"$1."839$.9$0"3;"

.A"$3".:"#2,2-%&-?<"C."9..6"$3"83)?"

8A"$3"8:"N($"$1.0."4%&2%5-.0"1%4."

5..9"%--38%$.6"$3"62;;.&.9$"

&.720$.&0:"F;"C."1%4."%"$12&6"

&.720$.&"$3"0)%&.<"C."83(-6"63"%"

0C%)"-2H.O"

Q.$<"C.",%?"93$"1%4."$120"&.720$.&:"

tmp = r1

r1 = r2

r2 = tmp

=>"/1%$"20"$1."

)&35-.,"3;"

0.)%&%$297"%"&.720$.&"

$3"63"$1."0C%)0@"

A>"F0"2$")30025-."$3"

2,)-.,.9$"0C%)0"

C2$13($"0)%&297"%"

$.,)3&%&?"&.720$.&@"

Register Allocation on SSA SSA exit with windmills

71 / 86

#C%)0"

D1.&."%&."C%?0"$3"2,)-.,.9$"0C%)0<"C2$13($"$1."9..6"3;"%"

$.,)3&%&?"-38%$239:"R9."3;"$1.0."C%?0"20"$1."C.--'H93C9"

1%8H297"3;"(0297"$1&.."+3&"3).&%$2390"$3".+81%97."$C3"

29$.7.&"-38%$2390:"D1.&."%&."3$1.&"C%?0<"$13(71:"#3,."

%&812$.8$(&.0")&3426."290$&(8$2390"$3"0C%)"$C3"&.720$.&0:"

D1."+ST<";3&"290$%98.<")&3426.0"$1."290$&(8$239"+817U&=<"&A><"

C1281".+81%97.0"$1."839$.9$0"3;"&="%96"&A:"

I%9"?3("$129H"%53($"

3$1.&"C%?0"$3"0C%)"

$1."839$.9$0"3;"

&.720$.&0@"

e2:r1, c2:r2 = !

swap(r1, r2)

c:r1 =" (c1:r1, c2:r2)

e:r2 =" (e1:r2, e2:r1)

! = e:r2, c:r1

e2:r1, c2:r2 = !

tmp = r1

r1 = r2

r2 = tmp

! = e:r2, c:r1

e2:r1, c2:r2 = !

r2 = r1 ^ r2

r1 = r1 ^ r2

r2 = r1 ^ r2

! = e:r2, c:r1

Register Allocation on SSA SSA exit with windmills

72 / 86

Register Allocation on SSA SSA exit with windmills

Implementing swaps – take 2

Problem 1: What about cycles of more than 2 variables?
Problem 2: RiscV has no swap instruction
▶ Back to the (theoretical) drawing board

73 / 86

Register Allocation on SSA SSA exit with windmills

The semantics of ϕ-instructions

Sequences of ϕ instructions are peculiar: they have no order.

a : r1 = ϕ(a1 : r1, a2 : r2)

b : r2 = ϕ(b1 : r2, b2 : r1)

c : r3 = ϕ(c1 : r3, c2 : r2)

All the ϕ should be executed “at the same time” using parallel moves:

r1, r2, r3 := r2, r1, r2

74 / 86

Register Allocation on SSA SSA exit with windmills

Parallel moves

r1, r2, r3 := r2, r1, r2
r1 r2 r3

A Parallel move (s1 → d1) . . . (sn → dn) is well defined if all the destinations are
disjoint: ∀i ̸= j, di ̸= dj .
▶ Almost a forest, but with cycles!

75 / 86

Register Allocation on SSA SSA exit with windmills

Windmill graphs

Definition
A graph is a windmill if each vertex has
at most one predecessor.

Picture from “Tilting at windmills with Coq”

Theorem
The graph associated to a well defined parallel move is a windmill

▶ How to cut this graph into individual moves?

76 / 86

Register Allocation on SSA SSA exit with windmills

Windmill graphs: easy cases
If the graph is a cycle:

r1

r2
r3

r4
r5

tmp := r1
r1 := r2
r2 := r3
r3 := r4
r4 := r5
r5 := tmp

If the graph is a forest:

r1

r2

r3

r4

r5

r4 := r3
r5 := r3
r3 := r1
r2 := r1

77 / 86

Register Allocation on SSA SSA exit with windmills

An algorithm

Sequentialize_moves(G)=
moves = []
For each vars v without successors in G:

For src in pred(v):
moves := moves + (v, src)
G := G \ {v}

For each cycle in G:
if len(cycle) == 1:

pass
else:

previous := tmp
for v in reversed(cycle):

moves := moves + (previous, v)
previous := v

moves := moves + (previous, tmp)
return moves

1 Start from the leaves

2 Remove all the easy moves
until there are no more leaves

3 Only cycles remains

4 Eliminate 1-cycles

5 Use an extra register to handle the
cycles

78 / 86

Register Allocation on SSA SSA exit with windmills

79 / 86

LAB : smart code Generation

1 Properties in SSA: Liveness

2 Register Allocation with graph coloring

3 Register Allocation on SSA

4 LAB : smart code Generation

80 / 86

LAB : smart code Generation

Smart Code Generation

Input: a MiniC file:

int n;

n=6;

Output: a RISCV file:

1 ;; (stat (assignment n = (expr (atom 6)) ;))

2 li t6, 6

3 mv t7, t6

▶ but with a smart allocation of registers and memory.

81 / 86

LAB : smart code Generation

Smart Code Generation

1 Previous labs

2 Lab TP5a

3 Lab TP5b

LinearCode
Lexing
Parsing

TargetCFG

SSA

Smart
Reg. Alloc.

Liveness

82 / 86

LAB : smart code Generation

Smart Code Generation – More details

1 Implement Liveness on SSA
2 Naive coloring/spilling strategy

1 Color with an infinite number of colors
2 Spill everything that doesn’t fit

3 No coalescing

4 Naive SSA exit (with Windmills)

83 / 86

LAB : smart code Generation

Summary
1 Properties in SSA: Liveness

2 Register Allocation with graph coloring
Conflict (Interference) Graph
Coloring
Spilling strategies

3 Register Allocation on SSA
Chordal graphs
Decoupled Register allocation
SSA exit with windmills

4 LAB : smart code Generation

Follow up: language extensions, SSA optimisations
84 / 86

LAB : smart code Generation

Exercise – Liveness and Allocation – Straight line code
We consider the following program:

int x,y,z,t;

x=12; y=3+x; z=4+y; t=x-y+z;

1 Compute the live-out at each
instruction

2 Draw and color the interference
graph

3 Do the register allocation with 2
registers

4 Generate the final code

With t, z, y, x 7→ tmp_0, tmp_1, tmp_2, tmp_3,
we obtain:

1 li tmp_4, 12

2 mv tmp_3, tmp_4

3 li tmp_5, 3

4 add tmp_6, tmp_5, tmp_3

5 mv tmp_2, tmp_6

6 li tmp_7, 4

7 add tmp_8, tmp_7, tmp_2

8 mv tmp_1, tmp_8

9 sub tmp_9, tmp_3, tmp_2

10 add tmp_10, tmp_9, tmp_1

11 mv tmp_0, tmp_10

85 / 86

LAB : smart code Generation

Exercise – Liveness and Allocation – CFG

We consider the program on the right

1 Compute the live-out at each
instruction

2 Draw and color the interference
graph

3 Do the register allocation with 2
registers

4 Generate the final code

86 / 86

	Properties in SSA: Liveness
	Register Allocation with graph coloring
	Register Allocation on SSA
	LAB : smart code Generation

