
Lab 4
Syntax-Directed Code Generation

Objective

During the previous lab, you have written your own interpreter of the MiniC language. In this lab the objective
is to generate valid RISCV codes from MiniC programs:

• Generate 3-address code for the MiniC language.
• Generate executable “dummy” RISCV from programs in MiniC via two simple allocation algorithms.
• Please follow instructions and COMMENT YOUR CODE!

Student files are in the Git repository.

Make sure your Git repository is up-to-date, using git pull.

4.1 Preliminaries

This section must be read carefully.

Important remark From now on, we add the following restriction to the MiniC language: Values (variables,
argument of println_int) are of type (signed) int or bool only (no float, no string, no char). Thus all values
can be stored in regular registers or in one cell (64 bits) in memory. You can let your program crash (raise
MiniCUnsupportedError(...)) if another type of variable is provided.

Note that real compilers would perform the code generation from a decorated AST (with type annotations
attached to nodes). For simplicity, we will work on the non-decorated AST: our language is simple enough to
generate code without decorations.

Structure of the compiler’s code In the MiniC/Lib folder, we provide you with many utility functions. A
detailed documentation of the library is given in the repository, and can be accessed at the root of the git
repository by opening docs/index.html in a web browser such as Firefox.

As for other files in the MiniC directory:

• TP04/MiniCCodeGen3AVisitor.py is the code generation algorithm, implemented as a visitor.

• The file TP03/MiniCTypingVisitor.py is reused from lab3. If your typechecker is buggy, you can use
the compiler’s --disable-typecheck to run the code generation without typechecking, and give the
value True to DISABLE_TYPECHECK in test_codegen.py.

• The main Python file, MiniCC.py as in lab3, now accepts new options related to code generation (check
python3 MiniCC.py --help for a full list). Running

python3 MiniCC.py --mode codegen-linear <file>

launches the chain: production of 3-address code with temporaries, allocation, replacement, print.

• The script test_codegen.pywill help you test your code. We will use it in Section 4.4 through Makefile
targets.

• The README-codegen.md file is to be completed progressively during the lab.

Re-test the command-line version of the RISCV simulator, for example with code from TP01:

cd ../TP01/riscv/
riscv64-unknown-elf-gcc libprint.s test_print.s -o test_print.riscv
spike -m100 pk test_print.riscv
cd ../../MiniC/

Laure Gonnord, Matthieu Moy, Gabriel Radanne et al. 1/17

4.2. TEST SUITE LAB 4. SYNTAX-DIRECTED CODE GENERATION

4.1.1 Conventions used in the assembly code

• All data items are stored on 64 bits (double-words, 8 bytes).

• Registers s1, s2, and s3 are reserved for temporary computations (e.g. to compute an address before or
after an sd or a ld, or to store a value between a memory access and an arithmetic operation). Note that
s0 is an alias for fp, hence s0must not be used as a general purpose register either.

• Registers s4, ..., s11, t0, ..., t6 are general purpose registers, that can be used freely by the code genera-
tor. In your Python code, you can access the list of general-purpose registers with Operands.GP_REGS.
si and ti registers will behave differently in presence of function calls, but are considered equivalent
for now.

• To store properly in memory, it is mandatory to compute offsets from the “reserved” register fp. To be
compatible with the RISCV ecosystem, we will use a stack growing with decreasing addresses. Thus
data in the stack is accessed by adding a negative offset (multiple of 8) to fp. In other words, we use the
memory locations -8(fp), -16(fp), . . . The sp register points to the first data contained in the stack. It
is always 16-byte (2 double-words) aligned.

• Registers a1 to a7 are not used at all for the moment.

4.1.2 Conventions used in the test suite

A few reminders and new features of the test suite:

• Test files should contain directives giving the expected behavior:

– // EXPECTED and the following lines to give the expected output;

– // EXITCODE n gives the expected return code of the compiler, i.e. // EXITCODE 1 when the
code should be rejected by your typechecker (see previous lab for the specification of different exit
codes);

– // SKIP TEST EXPECTED to specify that this test should not be run through test_expect (see
below);

• Several tests are run on each .c files when launching make test-something (make test-naive, make
test-lab4, etc.):

– test_expect, that compiles the file using riscv64-unknown-elf-gcc. It checks that EXPECTED
directives are correct, but doesn’t test your compiler.

– test_naive_alloc, test_alloc_mem, test_smart_alloc that compiles the file using your
compiler, using the corresponding register allocation algorithm. The test suite leaves generated .s
files next to the .c source file.

• make test FILTER=... can be used to restrict the set of files on which to run the test. Specify either a
single file or an extended wildcard like TP04/tests/**/*while*.c.

4.2 First step: get familiar with the code and test suite

In this section you have to implement the course rules in order to produce RISCV code with temporaries.
These rules are given in Figure 4.2 on page 9 and Figure 4.3 on page 10.

Here is an example of the expected output of this part. From the following MiniC program:

#include "printlib.h"

int main() {
int a,n;
n = 1;
a = 7;

Laure Gonnord, Matthieu Moy, Gabriel Radanne et al. 2/17

4.2. TEST SUITE LAB 4. SYNTAX-DIRECTED CODE GENERATION

while (n < a) {
n = n+1;

}
println_int(n);
return 0;

}

the following code is supposed to be generated.

1 ##Automatically generated RISCV code, MIF08 & CAP
2 ##non executable 3-Address instructions version
3

4

5 ##prelude
6 # [...] Some automatically generated code that will be explained in a future lab
7

8 ##Generated Code
9 # [...] Some automatically generated code that will be explained in a future lab

10 li temp_0, 0
11 li temp_1, 0
12 # (stat (assignment n = (expr (atom 1))) ;)
13 li temp_2, 1
14 mv temp_0, temp_2
15 # (stat (assignment a = (expr (atom 7))) ;)
16 li temp_3, 7
17 mv temp_1, temp_3
18 # (stat (while_stat while ((expr (expr (atom n)) < (expr (atom a)))) (

stat_block { (block (stat (assignment n = (expr (expr (atom n)) + (expr (atom 1)))
) ;)) })))

19 lbl_begin_while_1_main:
20 li temp_4, 0
21 bge temp_0, temp_1, lbl_end_relational_3_main
22 li temp_4, 1
23 lbl_end_relational_3_main:
24 beq temp_4, zero, lbl_end_while_2_main
25 # (stat (assignment n = (expr (expr (atom n)) + (expr (atom 1)))) ;)
26 li temp_5, 1
27 add temp_6, temp_0, temp_5
28 mv temp_0, temp_6
29 j lbl_begin_while_1_main
30 lbl_end_while_2_main:
31 # (stat (print_stat println_int ((expr (atom n))) ;))
32 mv a0, temp_0
33 call println_int
34 # [...] Some automatically generated code that will be explained in a future lab
35

36 ##postlude
37 # [...] Some automatically generated code that will be explained in a future lab

4.2.1 3-address code generation on supported C file

In the skeleton, we provide you an incomplete MiniCCodeGen3AVisitor.py. To run it, type

make # to generate the lexer and parser
python3 MiniCC.py --mode codegen-linear TP04/tests/provided/step1/test00.c \

--reg-alloc=none

Laure Gonnord, Matthieu Moy, Gabriel Radanne et al. 3/17

4.3. 3 ADDRESS CODE GENERATION LAB 4. SYNTAX-DIRECTED CODE GENERATION

cat TP04/tests/provided/step1/test00.s

Observe the generated code, it is complete (the skeleton supports all features used in this input file). Since
we used --reg-alloc=none, register allocation wasn’t performed, so we still get temporaries in the output,
which is not executable. We generated RISCV comments with MiniC statements to help debugging.

To get executable code, we provide you the naive (everything in registers) allocation:

python3 MiniCC.py --mode codegen-linear TP04/tests/provided/step1/test00.c \
--reg-alloc=naive --output TP04/tests/provided/step1/test00-naive.s

cat TP04/tests/provided/step1/test00-naive.s
riscv64-unknown-elf-gcc TP04/tests/provided/step1/test00-naive.s libprint.s \

-o TP04/tests/provided/step1/test00-naive.riscv
spike pk TP04/tests/provided/step1/test00-naive.riscv

This should ouptut 42 (plus the usual bbl loader line).
You can automate this, plus the run of test_expect (see above) with:

make FILTER=TP04/tests/provided/step1/test00.c test-naive

4.2.2 3-address code generation on C file not supported by the skeleton

Now, run the same command on an input file not yet supported by the skeleton:

python3 MiniCC.py --mode codegen-linear TP04/tests/provided/step1/test00b.c \
--reg-alloc=none

You should get a NotImplementedError exception, with a backtrace pointing to the location in the generator
where the feature (here, additive expressions) need to be implemented. To get an idea of what you’ll need to
implement, you may run:

git grep NotImplementedError

Here also, you can automate the test with:

make FILTER=TP04/tests/provided/step1/test00b.c test-naive

Off course, you can also run the whole test suite without FILTER:

make test-naive

A coverage report of the test suite is generated in htmlcov, it can help you identify untested parts of your
code.

It is strongly advised to adopt a “test driven” methodology, i.e. run the test suite, see what fails, fix it, and
iterate. When implementing a feature for which the skeleton has no test, write a test first.

The rest of the lab boils down to “make sure all tests pass and the test suite covers 100% of the generator
and allocators”.

4.3 3 address code generation

EXERCISE #1 Ï Basic cases for 3 address code generation
Implement the 3-address code generation corresponding to test cases in TP04/tests/provided/step1/, i.e.
make the following command succeeds:

make FILTER="TP04/tests/provided/step1/*" test-naive

EXERCISE #2 Ï A few corner-cases
Some points may require extra care, in the implementation or in the tests:

Laure Gonnord, Matthieu Moy, Gabriel Radanne et al. 4/17

4.3. 3 ADDRESS CODE GENERATION LAB 4. SYNTAX-DIRECTED CODE GENERATION

• Don’t forget the automatic initialization (in MiniC, unlike real C). Unlike the interpreter, initialization
cannot be done by initializing a Python dictionary. Make sure the initialization code is properly gener-
ated.

• Don’t forget the explicit errors for division by zero. We provide you a piece of assembly code raising
the error (see print_code() given in the library of the skeleton), you need to generate the instruction
to jump to this label (we get it with self._current_function.fdata.get_label_div_by_zero())
when the right operand of a division or modulo is 0.

• float and string are unsupported. The compiler raises MiniCUnsupportedErrorwhen encountering
any of them. Tests are provided for this.

Note that testing the division by 0 requires a bit of attention. We need to check that the executable exits
with code 1 at runtime, that the output is correct, but we can’t check that GCC gives the same behavior because
GCC doesn’t give a clean error message. A test case may therefore be:

#include "printlib.h"

int main(){
println_int(1 / 0);
return 0;

}
// SKIP TEST EXPECTED
// EXECCODE 1
// EXPECTED
// Division by 0

Test and implement all these features.

EXERCISE #3 Ï End of 3-address code generation for MiniC
Implement the 3-address code generation rules:

• for boolean expressions and numerical comparison: compute 1 (true) or 0 (false) in the destination
register; be careful the not boolean instruction is not as easy as you could wish;

• while loops;
• if then else.

At this point all the tests should be ok for all files in directory TP04/tests/provided/step2/. However these
tests are not sufficient, you should add some other ones (in the directory TP04/tests/students/). Run the
test suite with make test-naive MODE=codegen-linear to use all the test files.

About if and while For tests (and boolean expressions), make sure you generate “conditional jumps” with:

self._current_function.add_instruction(
RiscV.conditional_jump(label, op1, cond, op2))

where op1 (resp op2) is the left operand (resp right operand or the numerical constant 0, nothing else), i.e. a
register or a value of the boolean condition cond (Condition(’beq’) for equality, for instance) 1, and label
is a label to jump to if the condition evaluates to true.

Multiplicative expressions

EXERCISE #4 Ï 3-address code generation for multiplicative expressions
If not already done, extend your work to multiplicative expressions. Conventions for division and multiplica-
tion should be the same as in C: division is truncated toward zero, and modulo is such that (a/b)∗b+a%b = a.

4/3 = 1 4%3 = 1
(−4)/3 = −1 (−4)%3 = −1
4/(−3) = −1 4%(−3) = 1

(−4)/(−3) = 1 (−4)%(−3) = −1
1We suggest to use git grep and find this class definition and this method somewhere in the library we provide.

Laure Gonnord, Matthieu Moy, Gabriel Radanne et al. 5/17

4.4. MORE ON THE NAIVE ALLOCATOR LAB 4. SYNTAX-DIRECTED CODE GENERATION

4.4 More on the naive allocator

We provide you with an allocation method which allocates temporaries in registers as long as possible, and
fails if there is no more available registers. The process takes as input the former 3-address code and trans-
forms each instruction according to the allocation function. When there are not enough registers available,
the allocator raises an AllocationError exception. The test suite is programmed to skip tests raising this
exception (i.e. the test is neither considered as a success nor as a failure).

Open, read, understand the NaiveAllocator implementation in Lib/Allocator.py and how it is used
to perform the actual RISCV code generation.

4.5 RISCV code with “all-in-mem” allocation of temporaries

Tests Up to now, you used make test-naive MODE=codegen-linear to test your code, and at this point all
tests should pass, or be skipped (do not forget to make a test where the naive allocation uses too many regis-
ters!). From now on, you should use the more complete make test-mem MODE=codegen-linear command,
that tests everything with the provided naive allocator, and the all-in-memory allocator you have to write. If
you use MiniCC.py directly, the corresponding option is --reg-alloc=all-in-mem.

Check that make test-mem MODE=codegen-linear does fail. You can also run make test-lab4 to run
the tests for all allocators in this lab.

Implementation As the number of registers for allocation is bounded by the number of available general
purpose registers, i.e. len(Operands.GP_REGS), the naive allocator cannot deal with more temporaries than
general-purpose registers: we have to find a way to store the results elsewhere. In this particular lab, we will
use the following solution:

• The generated code will use memory locations in the stack.
• All values that are propagated from one rule to another (sub-expressions, . . .) must be stored in the stack,

whose address will be stored in F P .
• s1, s2, s3 will be used to compute the value to store or as a destination register for the value(s) to read.

Technically, only 2 of these registers are mandatory, but you should be cautious if you try a 2-registers-
only solution.

• In order to know if a given (temporary) operand should be read and/or written, use the is_read_only
method of the Instruction class.

Figure 4.1 depicts the stack implementation for the RISCV machine, that follows the RISC-V calling convention
(stack growing downwards, stack-pointer always 16-bytes aligned).

x0000

x3000ins1

ins2

x3000pc

xFFFF

x0
x1

fp

growing stack

x60FE

0(fp)
−8(fp)

−16(fp)

Figure 4.1: Memory model for RISCV

Following the convention that fp always stores the “begining of stack address”, pushing the content of
register s3 in the stack will be done following the steps:

• compute a new offset (call to the fresh_offsetmethod).
• generate the following instruction:

Laure Gonnord, Matthieu Moy, Gabriel Radanne et al. 6/17

4.5. “ALL-IN-MEM” ALLOCATION LAB 4. SYNTAX-DIRECTED CODE GENERATION

sd s3, -offset*8(fp)
sd = store double = 64-bits store
-offset*8(fp) = memory location at address fp-offset*8

Getting back the value is similar.
To understand the principle, complete manually the expected output for the following two statements. The

temporary temp_3 is located at −32(fp) and temp_4 is located at −40(fp):

int x, y;
x=4;
y=12+x

Listing 4.1: ’all in mem alloc for test_while2b.c’

1 ##Generated code without prelude and postlude
2 # (stat (assignment x = (expr (atom 4))) ;)
3 # li temp_2, 4
4 li s2, 4
5 sd s2, -24(fp)
6 # end li temp_2, 4
7 # mv temp_1, temp_2
8 ld s1, -24(fp)
9 mv s2, s1

10 sd s2, -16(fp)
11 # end mv temp_1, temp_2
12 # (stat (assignment y = (expr (expr (atom 12)) + (expr (atom x)))) ;)
13 # li temp_3, 12
14 # TODO 2 lines
15

16

17 # end li temp_3, 12
18 # add temp_4, temp_3, temp_1
19 # TODO 4 lines
20

21

22

23

24 # end add temp_4, temp_3, temp_1
25 # mv temp_0, temp_4
26 # NOT TODO

EXERCISE #5 Ï Implement
Now you are on your own to implement this code generation. The relevant file isTP04/AllInMemAllocator.py.
Here are the main steps (less than 50 locs of PYTHON):

1. We have implemented for you an AllInMemAllocator.prepare()method. It only maps each tempo-
rary to a new offset in memory (in a PYTHON dict), allowing the use of the method get_alloced_loc()
on a temporary used in the code.

2. Complete the method AllInMemAllocator.replace(old_instr) taking as input a “3-address with
temporaries” RISCV code and outputs a list of instructions as a replacement. For instance, each time
we access a source operand, we have to load it from memory before, thus the replace should contain
something like

regxxx is the register used to hold the value between the load and
the operation itself (one of s1, s2, s3).

Laure Gonnord, Matthieu Moy, Gabriel Radanne et al. 7/17

4.6. EXTENSIONS LAB 4. SYNTAX-DIRECTED CODE GENERATION

loc is the place in memory where the temporary is allocated (of
the form Offset(..., fp), obtained with get_alloced_loc().
before.append(RiscV.ld(regxxx, loc))

Be careful to not add useless ld or sd instructions!

The files you generate have to be tested with the RISCV simulator with the same script as before. Of course,
with “all-in-mem” allocation, tests that were “skipped” due to the lack of registers with the naive allocation
should not be skipped for test_alloc_mem.

More tests Now that your compiler can deal with a large number of temporaries, make sure all features are
heavily tested (the test suite we provide is in no way sufficient).

4.6 Extensions

You may need to write tests that are accepted by your compiler but not by GCC. If you do so, add a // SKIP
TEST EXPECTED directive in your tests, to disable the test_expect that would otherwise check your file using
GCC.

EXERCISE #6 Ï C- or Fortran-like for loops code generation
If you implemented one of the extensions in Lab 3, you can add it to code generation.

Note that the semantics of fortran-like loops when the loop counter is assigned within the loop makes the
code generation harder than C-like loops, where the loop counter is a variable like any other.

4.7 Delivery

This lab will be graded, but we will only ask you to upload it along with its second part (Lab4b), which takes
place next week. We highly recommend you to finish this part at least up to the all-in-mem allocator before, in
particular all tests from make test-lab4 MODE=codegen-linear (including your own) should pass.

Laure Gonnord, Matthieu Moy, Gabriel Radanne et al. 8/17

4.7. DELIVERY LAB 4. SYNTAX-DIRECTED CODE GENERATION

c

dest <- fresh_tmp()
code.add("li dest, c")
return dest

x

get the temporary associated to x.
tmp <- symbol_table[x]
return tmp

e1+e2

t1 <- GenCodeExpr(e_1)
t2 <- GenCodeExpr(e_2)
dest <- fresh_tmp()
code.add("add dest, t1, t2")
return dest

e1-e2

t1 <- GenCodeExpr(e_1)
t2 <- GenCodeExpr(e_2)
dest <- fresh_tmp()
code.add("sub dest, t1, t2")
return dest

true

dest <-fresh_tmp()
code.add("li dest, 1")
return dest

e1 < e2

dest <- fresh_tmp()
t1 <- GenCodeExpr(e1)
t2 <- GenCodeExpr(e2)
endrel <- fresh_label()
code.add("li dest, 0")
if t1>=t2 jump to endrel
code.add("bge endrel, t1, t2")
code.add("li dest, 1")
code.addLabel(endrel)
return dest

Figure 4.2: 3@ Code generation for numerical or Boolean expressions

Laure Gonnord, Matthieu Moy, Gabriel Radanne et al. 9/17

4.7. DELIVERY LAB 4. SYNTAX-DIRECTED CODE GENERATION

x = e

tmp <- GenCodeExpr(e)
loc <- symbol_table[x]
code.add("mv loc, tmp")

S1; S2

Just concatenate codes
GenCodeSmt(S1)
GenCodeSmt(S2)

if b then S1 else S2

lelse <- fresh_label()
lendif <- fresh_label()
t1 <- GenCodeExpr(b)
#if the condition is false, jump to else
code.add("beq lelse, t1, 0")
GenCodeSmt(S1) # then
code.add("j lendif")
code.addLabel(lelse)
GenCodeSmt(S2) # else
code.addLabel(lendif)

while b do S done

ltest <- fresh_label()
lendwhile <- fresh_label()
code.addLabel(ltest)
t1 <- GenCodeExpr(b)
code.add("beq lendwhile, t1, 0")
GenCodeSmt(S) # execute S
code.add("j ltest") # and jump to the test
code.addLabel(lendwhile) # else it is done.

Figure 4.3: 3@ Code generation for Statements

Laure Gonnord, Matthieu Moy, Gabriel Radanne et al. 10/17

Appendix A
RISCV Assembly Documentation (ISA), rv64g

About

• RISCV is an open instruction set initially developed by Berkeley University, used among others by West-
ern Digital, Alibaba and Nvidia.

• We are using the rv64g instruction set: Risc-V, 64 bits, General purpose (base instruction set, and exten-
sions for floating point, atomic and multiplications), without compressed instructions. In practice, we
will use only 32 bits instructions (and very few of floating point instructions).

• Document: Laure Gonnord and Matthieu Moy, for CAP and MIF08.

This is a simplified version of the machine, which is (hopefully) conform to the chosen simulator.

A.1 Installing the simulator and getting started

To get the RISCV assembler and simulator, follow instructions of the first lab (git pull on the course lab repos-
itory).

A.2 The RISCV architecture

Here is an example of RISCV assembly code snippet (a proper main function would be needed to execute it,
cf. course and lab):

1 addi a0, zero, 17 # initialisation of a register to 17
2 loop:
3 addi a0, a0, -1 # subtraction of an immediate
4 j loop # equivalent to jump xx

The rest of the documentation is adapted fromhttps://github.com/riscv/riscv-asm-manual/blob/
master/riscv-asm.md and https://github.com/jameslzhu/riscv-card/blob/master/riscv-card.
pdf

A.3 (Incomplete) RISC-V Assembly Programmer’s Manual

A.3.1 Copyright and License Information - Documents

The RISC-V Assembly Programmer’s Manual is
© 2017 Palmer Dabbelt palmer@dabbelt.com © 2017 Michael Clark michaeljclark@mac.com © 2017

Alex Bradbury asb@lowrisc.org
It is licensed under the Creative Commons Attribution 4.0 International License (CC-BY 4.0). The full li-

cense text is available at https://creativecommons.org/licenses/by/4.0/.

• Official Specifications webpage: https://riscv.org/specifications/

• Latest Specifications draft repository: https://github.com/riscv/riscv-isa-manual

This document has been modified by Laure Gonnord & Matthieu Moy, in 2019 for teaching purpose (MIF08
and CAP).

Laure Gonnord, Matthieu Moy, Gabriel Radanne et al. 11/17

https://github.com/riscv/riscv-asm-manual/blob/master/riscv-asm.md
https://github.com/riscv/riscv-asm-manual/blob/master/riscv-asm.md
https://github.com/jameslzhu/riscv-card/blob/master/riscv-card.pdf
https://github.com/jameslzhu/riscv-card/blob/master/riscv-card.pdf
mailto:palmer@dabbelt.com
mailto:michaeljclark@mac.com
mailto:asb@lowrisc.org

A.3. (INCOMPLETE) RISC-V ASSEMBLY PROGRAMMER’S MANUAL APPENDIX A. RISCV ISA

A.3.2 Registers

Registers are the most important part of any processor. RISC-V defines various types, depending on which
extensions are included: The general registers (with the program counter), control registers, floating point
registers (F extension), and vector registers (V extension). We won’t use control nor F or V registers.

General registers

The RV32I base integer ISA includes 32 registers, named x0 to x31. The program counter PC is separate from
these registers, in contrast to other processors such as the ARM-32. The first register, x0, has a special function:
Reading it always returns 0 and writes to it are ignored.

In practice, the programmer doesn’t use this notation for the registers. Though x1 to x31 are all equally
general-use registers as far as the processor is concerned, by convention certain registers are used for special
tasks. In assembler, they are given standardized names as part of the RISC-V application binary interface
(ABI). This is what you will usually see in code listings. If you really want to see the numeric register names,
the -M argument to objdump will provide them.

Register ABI Use by convention Preserved?

x0 zero hardwired to 0, ignores writes n/a
x1 ra return address for jumps no
x2 sp stack pointer yes
x3 gp global pointer n/a
x4 tp thread pointer n/a
x5 t0 temporary register 0 no
x6 t1 temporary register 1 no
x7 t2 temporary register 2 no
x8 s0 or fp saved register 0 or frame pointer yes
x9 s1 saved register 1 yes
x10 a0 return value or function argument 0 no
x11 a1 return value or function argument 1 no
x12 a2 function argument 2 no
x13 a3 function argument 3 no
x14 a4 function argument 4 no
x15 a5 function argument 5 no
x16 a6 function argument 6 no
x17 a7 function argument 7 no
x18 s2 saved register 2 yes
x19 s3 saved register 3 yes
x20 s4 saved register 4 yes
x21 s5 saved register 5 yes
x22 s6 saved register 6 yes
x23 s7 saved register 6 yes
x24 s8 saved register 8 yes
x25 s9 saved register 9 yes
x26 s10 saved register 10 yes
x27 s11 saved register 11 yes
x28 t3 temporary register 3 no
x29 t4 temporary register 4 no
x30 t5 temporary register 5 no
x31 t6 temporary register 6 no
pc (none) program counter n/a

Registers of the RV32I. Based on RISC-V documentation and Patterson and Waterman “The RISC-V Reader”
(2017)

Laure Gonnord, Matthieu Moy, Gabriel Radanne et al. 12/17

A.3. (INCOMPLETE) RISC-V ASSEMBLY PROGRAMMER’S MANUAL APPENDIX A. RISCV ISA

As a general rule, the saved registers s0 to s11 are preserved across function calls, while the argument
registers a0 to a7 and the temporary registers t0 to t6 are not. The use of the various specialized registers
such as sp by convention will be discussed later in more detail.

A.3.3 Instructions

Arithmetic

add, addi, sub, classically.

addi a0, zero, 42

initialises a0 to 0+42 = 42.

Labels

Text labels are used as branch, unconditional jump targets and symbol offsets. Text labels are added to the
symbol table of the compiled module.

loop:
j loop

Jumps and branches target is encoded with a relative offset in bytes. It is relative to the beginning of the
current instruction. For example, the self-loop above corresponds to an offset of 0 bytes.

Branching

Test and jump, within the same instruction:

beq a0, a1, end

tests whether the values stored in a0 and a1 are equal, and jumps to ‘end’ if so.

Absolute addressing

The following example shows how to load an absolute address:

.section .text

.globl _start
_start:

lui a0, %hi(msg) # load msg(hi)
addi a0, a0, %lo(msg) # load msg(lo)
jal ra, puts

2: j 2b

.section .rodata
msg:

.string "Hello World\n"

which generates the following assembler output and relocations as seen by objdump:

0000000000000000 <_start>:
0: 000005b7 lui a1,0x0

0: R_RISCV_HI20 msg
4: 00858593 addi a1,a1,8 # 8 <.L21>

4: R_RISCV_LO12_I msg

Laure Gonnord, Matthieu Moy, Gabriel Radanne et al. 13/17

A.3. (INCOMPLETE) RISC-V ASSEMBLY PROGRAMMER’S MANUAL APPENDIX A. RISCV ISA

Relative addressing

The following example shows how to load a PC-relative address:

.section .text

.globl _start
_start:
1: auipc a0, %pcrel_hi(msg) # load msg(hi)

addi a0, a0, %pcrel_lo(1b) # load msg(lo)
jal ra, puts

2: j 2b

.section .rodata
msg:

.string "Hello World\n"

which generates the following assembler output and relocations as seen by objdump:

0000000000000000 <_start>:
0: 00000597 auipc a1,0x0

0: R_RISCV_PCREL_HI20 msg
4: 00858593 addi a1,a1,8 # 8 <.L21>

4: R_RISCV_PCREL_LO12_I .L11

Load Immediate

The following example shows the li pseudo instruction which is used to load immediate values:

li a0, 0x76543210

which generates the following assembler output as seen by objdump (generated code will be different de-
pending on the constant):

0: 76543537 lui a0,0x76543
4: 2105051b addiw a0,a0,528

Load Address

The following example shows the la pseudo instruction which is used to load symbol addresses:

.section .text

.globl _start
_start:

la a0, msg

.section .rodata
msg:

.string "Hello World\n"

A.3.4 Assembler directives for CAP and MIF08

Both the RISC-V-specific and GNU .-prefixed options.
The following table lists assembler directives:

Directive Arguments Description

.align integer align to power of 2 (alias for .p2align)

Laure Gonnord, Matthieu Moy, Gabriel Radanne et al. 14/17

A.3. (INCOMPLETE) RISC-V ASSEMBLY PROGRAMMER’S MANUAL APPENDIX A. RISCV ISA

Directive Arguments Description

.file “filename” emit filename FILE LOCAL symbol
table

.globl symbol_name emit symbol_name to symbol table
(scope GLOBAL)

.local symbol_name emit symbol_name to symbol table
(scope LOCAL)

.section [{.text,.data,.rodata,.bss}] emit section (if not present, default
.text) and make current

.size symbol, symbol accepted for source compatibility

.text emit .text section (if not present) and
make current

.data emit .data section (if not present) and
make current

.rodata emit .rodata section (if not present)
and make current

.string “string” emit string

.equ name, value constant definition

.word expression [, expression]* 32-bit comma separated words

.balign b,[pad_val=0] byte align

.zero integer zero bytes

A.3.5 Assembler Relocation Functions

The following table lists assembler relocation expansions:

Assembler Notation Description Instruction / Macro

%hi(symbol) Absolute (HI20) lui
%lo(symbol) Absolute (LO12) load, store, add
%pcrel_hi(symbol) PC-relative (HI20) auipc
%pcrel_lo(label) PC-relative (LO12) load, store, add

A.3.6 Instruction encoding

Credit This is a subset of the RISC-V greencard, by James Izhu, licence CC by SA, https://github.com/
jameslzhu/riscv-card

Core Instruction Formats

31 27 26 25 24 20 19 15 14 12 11 7 6 0

funct7 rs2 rs1 funct3 rd opcode R-type
imm[11:0] rs1 funct3 rd opcode I-type

imm[11:5] rs2 rs1 funct3 imm[4:0] opcode S-type
imm[12|10:5] rs2 rs1 funct3 imm[4:1|11] opcode B-type

imm[31:12] rd opcode U-type
imm[20|10:1|11|19:12] rd opcode J-type

“imm[x:y]” means “bits x to y from binary representation of imm”. “imm[y|x]” means “bits y, then x of imm”. Negative
immediate values are stored using two’s complement (e.g. -1 is 1111. . . 1).

Laure Gonnord, Matthieu Moy, Gabriel Radanne et al. 15/17

https://github.com/jameslzhu/riscv-card
https://github.com/jameslzhu/riscv-card

A.3. (INCOMPLETE) RISC-V ASSEMBLY PROGRAMMER’S MANUAL APPENDIX A. RISCV ISA

RV32I Base Integer Instructions - CAP subset

Inst Name FMT Opcode funct3 funct7 Description (C) Note
add ADD R 0110011 0x0 0x00 rd = rs1 + rs2
sub SUB R 0110011 0x0 0x20 rd = rs1 - rs2
xor XOR R 0110011 0x4 0x00 rd = rs1 ˆ rs2
or OR R 0110011 0x6 0x00 rd = rs1 | rs2
and AND R 0110011 0x7 0x00 rd = rs1 & rs2
slt Set Less Than R 0110011 0x2 0x00 rd = (rs1 < rs2)?1:0
sltu Set Less Than (U) R 0110011 0x3 0x00 rd = (rs1 < rs2)?1:0 zero-extends
addi ADD Immediate I 0010011 0x0 rd = rs1 + imm
xori XOR Immediate I 0010011 0x4 rd = rs1 ˆ imm
ori OR Immediate I 0010011 0x6 rd = rs1 | imm
andi AND Immediate I 0010011 0x7 rd = rs1 & imm
lb Load Byte I 0000011 0x0 rd = M[rs1+imm][0:7]
lw Load Word I 0000011 0x2 rd = M[rs1+imm][0:31]
lbu Load Byte (U) I 0000011 0x4 rd = M[rs1+imm][0:7] zero-extends
sb Store Byte S 0100011 0x0 M[rs1+imm][0:7] = rs2[0:7]
sw Store Word S 0100011 0x2 M[rs1+imm][0:31] = rs2[0:31]

beq Branch == B 1100011 0x0 if(rs1 == rs2) PC += imm
bne Branch != B 1100011 0x1 if(rs1 != rs2) PC += imm
blt Branch < B 1100011 0x4 if(rs1 < rs2) PC += imm
bge Branch ≥ B 1100011 0x5 if(rs1 >= rs2) PC += imm
bltu Branch < (U) B 1100011 0x6 if(rs1 < rs2) PC += imm zero-extends
bgeu Branch ≥ (U) B 1100011 0x7 if(rs1 >= rs2) PC += imm zero-extends
jal Jump And Link J 1101111 rd = PC+4; PC += imm
jalr Jump And Link Reg I 1100111 0x0 rd = PC+4; PC = rs1 + imm

lui Load Upper Imm U 0110111 rd = imm << 12
auipc Add Upper Imm to PC U 0010111 rd = PC + (imm << 12)

Laure Gonnord, Matthieu Moy, Gabriel Radanne et al. 16/17

A.3. (INCOMPLETE) RISC-V ASSEMBLY PROGRAMMER’S MANUAL APPENDIX A. RISCV ISA

Pseudo Instructions

Pseudoinstruction Base Instruction(s) Meaning

la rd, symbol
auipc rd, symbol[31:12]

Load address
addi rd, rd, symbol[11:0]

{lb|lh|lw|ld} rd, symbol
auipc rd, symbol[31:12]

Load global
{lb|lh|lw|ld} rd, symbol[11:0](rd)

{sb|sh|sw|sd} rd, symbol, rt
auipc rt, symbol[31:12]

Store global
s{b|h|w|d} rd, symbol[11:0](rt)

{flw|fld} rd, symbol, rt
auipc rt, symbol[31:12]

Floating-point load global
fl{w|d} rd, symbol[11:0](rt)

{fsw|fsd} rd, symbol, rt
auipc rt, symbol[31:12]

Floating-point store global
fs{w|d} rd, symbol[11:0](rt)

nop addi x0, x0, 0 No operation
li rd, immediate Myriad sequences Load immediate
mv rd, rs addi rd, rs, 0 Copy register
not rd, rs xori rd, rs, -1 One’s complement
neg rd, rs sub rd, x0, rs Two’s complement
negw rd, rs subw rd, x0, rs Two’s complement word
sext.w rd, rs addiw rd, rs, 0 Sign extend word
seqz rd, rs sltiu rd, rs, 1 Set if = zero
snez rd, rs sltu rd, x0, rs Set if ̸= zero
sltz rd, rs slt rd, rs, x0 Set if < zero
sgtz rd, rs slt rd, x0, rs Set if > zero
fmv.s rd, rs fsgnj.s rd, rs, rs Copy single-precision register
fabs.s rd, rs fsgnjx.s rd, rs, rs Single-precision absolute value
fneg.s rd, rs fsgnjn.s rd, rs, rs Single-precision negate
fmv.d rd, rs fsgnj.d rd, rs, rs Copy double-precision register
fabs.d rd, rs fsgnjx.d rd, rs, rs Double-precision absolute value
fneg.d rd, rs fsgnjn.d rd, rs, rs Double-precision negate
beqz rs, offset beq rs, x0, offset Branch if = zero
bnez rs, offset bne rs, x0, offset Branch if ̸= zero
blez rs, offset bge x0, rs, offset Branch if ≤ zero
bgez rs, offset bge rs, x0, offset Branch if ≥ zero
bltz rs, offset blt rs, x0, offset Branch if < zero
bgtz rs, offset blt x0, rs, offset Branch if > zero
bgt rs, rt, offset blt rt, rs, offset Branch if >
ble rs, rt, offset bge rt, rs, offset Branch if ≤
bgtu rs, rt, offset bltu rt, rs, offset Branch if >, unsigned
bleu rs, rt, offset bgeu rt, rs, offset Branch if ≤, unsigned
j offset jal x0, offset Jump
jal offset jal x1, offset Jump and link
jr rs jalr x0, rs, 0 Jump register
jalr rs jalr x1, rs, 0 Jump and link register
ret jalr x0, x1, 0 Return from subroutine

call offset
auipc x1, offset[31:12]

Call far-away subroutine
jalr x1, x1, offset[11:0]

tail offset
auipc x6, offset[31:12]

Tail call far-away subroutine
jalr x0, x6, offset[11:0]

fence fence iorw, iorw Fence on all memory and I/O

RV32M Multiply Extension (basic instructions)

Inst Name FMT Opcode funct3 funct7 Description (C)
mul MUL R 0110011 0x0 0x01 rd = (rs1 * rs2)[31:0]
div DIV R 0110011 0x4 0x01 rd = rs1 / rs2
rem Remainder R 0110011 0x6 0x01 rd = rs1 % rs2

Laure Gonnord, Matthieu Moy, Gabriel Radanne et al. 17/17

	Syntax-Directed Code Generation
	Preliminaries
	Conventions used in the assembly code
	Conventions used in the test suite

	Test suite
	3-address code generation on supported C file
	3-address code generation on C file not supported by the skeleton

	3 address code generation
	More on the naive allocator
	``all-in-mem'' allocation
	Extensions
	Delivery

	RiscV ISA
	Installing the simulator and getting started
	The RISCV architecture
	(Incomplete) RISC-V Assembly Programmer's Manual
	Copyright and License Information - Documents
	Registers
	Instructions
	Assembler directives for CAP and MIF08
	Assembler Relocation Functions
	Instruction encoding

