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Motivation: It’s all about information

Compilers alternate between two tasks: 
1. computing some information (invariants) of the program 
2. using this information to justify some program transformations

Dataflow analyses associate facts to every program point: 
* a fact is associated to a definition-site of a variable 
* a fact is exploited at a use-site of a variable

x <- 3 
y <- 2 * a 
jmp (x > y)

x <- 3 
y <- 2 * a y <- y * y

z <- x + y
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Motivation: It’s all about information

Compilers alternate between two tasks: 
1. computing some information (invariants) of the program 
2. using this information to justify some program transformations

Dataflow analyses associate facts to every program point: 
* a fact is associated to a definition-site of a variable 
* a fact is exploited at a use-site of a variable

x <- 3 
y <- 2 * a 
jmp (x > y)

x <- 3 
y <- 2 * a y <- y * y

z <- x + y

x = 3
y is even
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Motivation: It’s all about information

Compilers alternate between two tasks: 
1. computing some information (invariants) of the program 
2. using this information to justify some program transformations

Dataflow analyses associate facts to every program point: 
* a fact is associated to a definition-site of a variable 
* a fact is exploited at a use-site of a variable

x <- 3 
y <- 2 * a 
jmp (x > y)

x <- 3 
y <- 2 * a y <- y * y

z <- x + y

x = 3
y is even

What do we know about x and y?

z = ?
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Motivation: It’s all about information

Compilers alternate between two tasks: 
1. computing some information (invariants) of the program 
2. using this information to justify some program transformations

Dataflow analyses associate facts to every program point: 
* a fact is associated to a definition-site of a variable 
* a fact is exploited at a use-site of a variable

One solution: use a data-structure, the def-use and use-def chains

x <- 3 
y <- 2 * a 
jmp (x > y)

x <- 3 
y <- 2 * a y <- y * y

z <- x + y

M def and N use of a variable: O(N * M) space and time
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Motivation: It’s all about information

Compilers alternate between two tasks: 
1. computing some information (invariants) of the program 
2. using this information to justify some program transformations

Dataflow analyses associate facts to every program point: 
* a fact is associated to a definition-site of a variable 
* a fact is exploited at a use-site of a variable

One solution: use a data-structure, the def-use and use-def chains

x <- 3 
y <- 2 * a 
jmp (x > y)

x <- 3 
y <- 2 * a y <- y * y

z <- x + y

M def and N use of a variable: O(N * M) space and time

Could we enforce this structure to be trivial by definition? Sure, let’s have M = 1!
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Motivation: It’s all about information

Compilers alternate between two tasks: 
1. computing some information (invariants) of the program 
2. using this information to justify some program transformations

Dataflow analyses associate facts to every program point: 
* a fact is associated to a definition-site of a variable 
* a fact is exploited at a use-site of a variable

One solution: use a data-structure, the def-use and use-def chains

x <- 3 
y <- 2 * a 
jmp (x > y)

x <- 3 
y <- 2 * a y <- y * y

z <- x + y

M def and N use of a variable: O(N * M) space and time

Could we enforce this structure to be trivial by definition? Sure, let’s have M = 1!

We want to enforce an invariant by construction: we want an intermediate representation

SSA Control Flow Graph
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Single Static Assignment (SSA)

¹ Dynamically, it can be defined many times: it is not “Single Assignment”!

Each variable has exactly one definition in the syntax¹

Use-def chains are explicit in the syntax of the program -> Many optimizations are simplified
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Single Static Assignment (SSA)

¹ Dynamically, it can be defined many times: it is not “Single Assignment”!

Each variable has exactly one definition in the syntax¹

Use-def chains are explicit in the syntax of the program -> Many optimizations are simplified

We will consider here more specifically Control Flow Graphs in SSA form

Introduced in 1988:  
“Global value numbers and redundant computations” by Rosen, Wegman and Zadeck

Used in most modern compilers: GCC, llvm, HotSpot…
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Converting to SSA form: informally
SSA Control Flow Graph
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Converting to SSA form: informally

Each variable has exactly one definition in the syntax
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Converting straight code

a  <- x  + 1 
b  <- a  * 2 
a  <- a  + b  
c  <- x  * a  
b  <- c  - 1

bl:
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Converting straight code

a  <- x  + 1 
b  <- a  * 2 
a  <- a  + b  
c  <- x  * a  
b  <- c  - 1

bl:
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Converting straight code

a  <- x  + 1 
b  <- a  * 2 
a  <- a  + b  
c  <- x  * a  
b  <- c  - 1

a1 <- x  + 1  
b1 <- a1 * 2  

 a2 <- a1 + b1 
 c1 <- x  * a2 
b2 <- c1 - 1 

bl:bl:

SSA Control Flow Graph
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Converting straight code

Rule 1: use a fresh index at each def-site

a  <- x  + 1 
b  <- a  * 2 
a  <- a  + b  
c  <- x  * a  
b  <- c  - 1

a1 <- x  + 1  
b1 <- a1 * 2  

 a2 <- a1 + b1 
 c1 <- x  * a2 
b2 <- c1 - 1 

bl:bl:
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Converting straight code

Rule 1: use a fresh index at each def-site

a  <- x  + 1 
b  <- a  * 2 
a  <- a  + b  
c  <- x  * a  
b  <- c  - 1

a1 <- x  + 1  
b1 <- a1 * 2  

 a2 <- a1 + b1 
 c1 <- x  * a2 
b2 <- c1 - 1 

bl:bl:
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Converting straight code

Rule 1: use a fresh index at each def-site

Rule 2: use the most recent definition at each use-site

a  <- x  + 1 
b  <- a  * 2 
a  <- a  + b  
c  <- x  * a  
b  <- c  - 1

a1 <- x  + 1  
b1 <- a1 * 2  

 a2 <- a1 + b1 
 c1 <- x  * a2 
b2 <- c1 - 1 

bl:bl:
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a1 <- x  + 1  
b1 <- a1 * 2  

 a2 <- a1 + b1 
 c1 <- x  * a2 
b2 <- c1 - 1 

a  <- x  + 1 
b  <- a  * 2 
a  <- a  + b  
c  <- x  * a  
b  <- c  - 1

Converting disjunction points

Rule 1: use a fresh index at each def-site 

Rule 2: use the most recent definition at each use-site

x <- 3 * y 
jmp (x = 0)

a  <- x  - y 
d  <- a  * 2

bi:

bl:
br:
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a1 <- x  + 1  
b1 <- a1 * 2  

 a2 <- a1 + b1 
 c1 <- x  * a2 
b2 <- c1 - 1 

a  <- x  + 1 
b  <- a  * 2 
a  <- a  + b  
c  <- x  * a  
b  <- c  - 1

Converting disjunction points

Rule 1: use a fresh index at each def-site 

Rule 2: use the most recent definition at each use-site

x <- 3 * y 
jmp (x = 0)

a  <- x  - y 
d  <- a  * 2

x <- 3 * y 
jmp (x = 0)

a3 <- x  - y 
d  <- a3 * 2

br:
bl:

bi:bi:

bl:
br:
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a1 <- x  + 1  
b1 <- a1 * 2  

 a2 <- a1 + b1 
 c1 <- x  * a2 
b2 <- c1 - 1 

a  <- x  + 1 
b  <- a  * 2 
a  <- a  + b  
c  <- x  * a  
b  <- c  - 1

Converting disjunction points

Rule 1: use a fresh index at each def-site 

Rule 2: use the most recent definition at each use-site

x <- 3 * y 
jmp (x = 0)

a  <- x  - y 
d  <- a  * 2

x <- 3 * y 
jmp (x = 0)

a3 <- x  - y 
d  <- a3 * 2

br:
bl:

bi:

Freshness is global

bi:

bl:
br:

SSA Control Flow Graph

22 / 105



Converting merging points:  
-nodesΦ

Rule 1: use a fresh index at each def-site 

Rule 2: use the most recent definition at each use-site

a1 <- x  + 1  
b1 <- a1 * 2  

 a2 <- a1 + b1 
 c1 <- x  * a2 
b2 <- c1 - 1 

a  <- x  + 1 
b  <- a  * 2 
a  <- a  + b  
c  <- x  * a  
b  <- c  - 1

x <- 3 * y 
jmp (x = 0)

a  <- x  - y 
d  <- a  * 2

x <- 3 * y 
jmp (x = 0)

a3 <- x  - y 
d  <- a3 * 2

z <- a * 2

bi:

bl:
br: br:

bl:

bi:

bf:
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Converting merging points:  
-nodesΦ

Rule 1: use a fresh index at each def-site 

Rule 2: use the most recent definition at each use-site
?

a1 <- x  + 1  
b1 <- a1 * 2  

 a2 <- a1 + b1 
 c1 <- x  * a2 
b2 <- c1 - 1 

a  <- x  + 1 
b  <- a  * 2 
a  <- a  + b  
c  <- x  * a  
b  <- c  - 1

x <- 3 * y 
jmp (x = 0)

a  <- x  - y 
d  <- a  * 2

x <- 3 * y 
jmp (x = 0)

a3 <- x  - y 
d  <- a3 * 2

z <- a * 2

bi:

bl:
br: br:

bl:

bi:

bf:
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Converting merging points:  
-nodesΦ

Rule 1: use a fresh index at each def-site 

Rule 2: use the most recent definition at each use-site

a1 <- x  + 1  
b1 <- a1 * 2  

 a2 <- a1 + b1 
 c1 <- x  * a2 
b2 <- c1 - 1 

a  <- x  + 1 
b  <- a  * 2 
a  <- a  + b  
c  <- x  * a  
b  <- c  - 1

x <- 3 * y 
jmp (x = 0)

a  <- x  - y 
d  <- a  * 2

x <- 3 * y 
jmp (x = 0)

a3 <- x  - y 
d  <- a3 * 2

z <- a * 2

Rule 3: at merge points, introduce -nodesΦ

a4 <- (bl:a2,br:a3) 
z <- a4 * 2

Φ
bf:

bi:

bl:
br: br:

bl:

bi:

bf:

SSA Control Flow Graph
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Converting merging points:  
-nodesΦ

a1 <- x  + 1  
b1 <- a1 * 2  

 a2 <- a1 + b1 
 c1 <- x  * a2 
b2 <- c1 - 1 

a  <- x  + 1 
b  <- a  * 2 
a  <- a  + b  
c  <- x  * a  
b  <- c  - 1

x <- 3 * y 
jmp (x = 0)

a  <- x  - y 
d  <- a  * 2

x <- 3 * y 
jmp (x = 0)

a3 <- x  - y 
d  <- a3 * 2

z <- a * 2

Goal: to decide when to introduce -nodesΦ
a4 <- (bl:a2,br:a3) 

z <- a4 * 2
Φ

bf:

bi:

bl:
br: br:

bl:

bi:

bf:
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Converting merging points:  
-nodesΦ

a1 <- x  + 1  
b1 <- a1 * 2  

 a2 <- a1 + b1 
 c1 <- x  * a2 
b2 <- c1 - 1 

a  <- x  + 1 
b  <- a  * 2 
a  <- a  + b  
c  <- x  * a  
b  <- c  - 1

x <- 3 * y 
jmp (x = 0)

a  <- x  - y 
d  <- a  * 2

x <- 3 * y 
jmp (x = 0)

a3 <- x  - y 
d  <- a3 * 2

z <- a * 2

Goal: to decide when to introduce -nodesΦ
One per variable at every join point?

a4 <- (bl:a2,br:a3) 
z <- a4 * 2

Φ
bf:

bi:

bl:
br: br:

bl:

bi:

bf:
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Converting merging points:  
-nodesΦ

a1 <- x  + 1  
b1 <- a1 * 2  

 a2 <- a1 + b1 
 c1 <- x  * a2 
b2 <- c1 - 1 

a  <- x  + 1 
b  <- a  * 2 
a  <- a  + b  
c  <- x  * a  
b  <- c  - 1

x <- 3 * y 
jmp (x = 0)

a  <- x  - y 
d  <- a  * 2

x <- 3 * y 
jmp (x = 0)

a3 <- x  - y 
d  <- a3 * 2

z <- a * 2 a4 <- (a2,a3) 
z <- a4 * 2

Φ

Goal: to decide when to introduce few -nodesΦ
One per variable at every join point?

bi:

bl:
br: br:

bl:

bi:

bf: bf:

SSA Control Flow Graph
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Converting to SSA form: an algorithm
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Converting to SSA form: an algorithm

Goal: to decide when to introduce few -nodesΦ

SSA Control Flow Graph
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The domination relation

entry

loop

exittest

br_l br_r

loop_end

A dominates B if any path from entry to B contains A

SSA Control Flow Graph
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The domination relation

entry

loop

exittest

br_l br_r

loop_end

A dominates B if any path from entry to B contains A

Can you annotate the nodes 
with their dominators?
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The domination relation

entry

loop

exittest

br_l br_r

loop_end

A dominates B if any path from entry to B contains A

SSA Control Flow Graph
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The domination relation

entry

loop

exittest

br_l br_r

loop_end

A dominates B if any path from entry to B contains A{entry}

It’s reflexive

SSA Control Flow Graph
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The domination relation

entry

loop

exittest

br_l br_r

loop_end

A dominates B if any path from entry to B contains A

{entry,loop}

{entry}

It’s reflexive
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The domination relation

entry

loop

exittest

br_l br_r

loop_end

A dominates B if any path from entry to B contains A

{entry,loop}

{entry,loop,exit}

{entry}

It’s reflexive
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The domination relation

entry

loop

exittest

br_l br_r

loop_end

A dominates B if any path from entry to B contains A

{entry,loop}

{entry,loop,exit}

{entry,loop,test,br_r}

{entry}

It’s reflexive
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The domination relation

entry

loop

exittest

br_l br_r

loop_end

A dominates B if any path from entry to B contains A

{entry,loop}

{entry,loop,exit}

{entry,loop,test,br_r}

{entry,loop,test,loop_end}

{entry}

It’s reflexive
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The domination relation

entry

loop

exittest

br_l br_r

loop_end

A dominates B if any path from entry to B goes through A

{entry,loop}

{entry,loop,exit}

{entry,loop,test,loop_end}

The domination tree stores the domination relation 
A is parent to B if: 
• A strictly dominates B 
• A does not strictly dominates any C  

that strictly dominates B

A strictly dominates B if A dominates B and A is not B

{entry,loop,test,br_r}
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The domination relation

entry

loop

exittest

br_l br_r

loop_end

A dominates B if any path from entry to B goes through A

{entry,loop}

{entry,loop,exit}

{entry,loop,test,loop_end}

The domination tree stores the domination relation 
A is parent to B if: 
• A strictly dominates B 
• A does not strictly dominates any C  

that strictly dominates B

A strictly dominates B if A dominates B and A is not B

Can you build the domination tree 
of the CFG to the left?

{entry,loop,test,br_r}
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The domination relation

entry

loop

exittest

br_l br_r

loop_end

A dominates B if any path from entry to B goes through A

{entry,loop}

{entry,loop,exit}

{entry,loop,test,loop_end}

The domination tree stores the domination relation 
A is parent to B if: 
• A strictly dominates B 
• A does not strictly dominates any C  

that strictly dominates B

A strictly dominates B if A dominates B and A is not B

{entry,loop,test,br_r}
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The domination relation

entry

loop

exittest

br_l br_r

loop_end

A dominates B if any path from entry to B goes through A

{entry,loop}

{entry,loop,exit}

{entry,loop,test,loop_end}

The domination tree stores the domination relation 
A is parent to B if: 
• A strictly dominates B 
• A does not strictly dominates any C  

that strictly dominates B

A strictly dominates B if A dominates B and A is not B

entry

loop

exittest

br_l br_r loop_end

{entry,loop,test,br_r}
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Dominance frontier

entry

loop

exittest

br_l br_r

loop_end

B belongs to A’s dominance frontier if: 
• A does not strictly dominate B 
• A dominates a direct predecessor of B
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All nodes in there are dominated by entry

Dominance frontier

entry

loop

exittest

br_l br_r

loop_end

B belongs to A’s dominance frontier if: 
• A does not strictly dominate B 
• A dominates a direct predecessor of B
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All nodes in there are dominated by entry

Dominance frontier

entry

loop

exittest

br_l br_r

loop_end

B belongs to A’s dominance frontier if: 
• A does not strictly dominate B 
• A dominates a direct predecessor of Bentry’

SSA Control Flow Graph

45 / 105



All nodes in there are dominated by entry

Dominance frontier

entry

loop

exittest

br_l br_r

loop_end

B belongs to A’s dominance frontier if: 
• A does not strictly dominate B 
• A dominates a direct predecessor of Bentry’

SSA Control Flow Graph

46 / 105



Dominance frontier

entry

loop

exittest

br_l br_r

loop_end All nodes in there are dominated by entry

entry’

exit now barely escapes the influence of entry:  
it is in its dominance frontier

B belongs to A’s dominance frontier if: 
• A does not strictly dominate B 
• A dominates a direct predecessor of B
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Dominance frontier

entry

loop

exittest

br_l br_r

loop_end All nodes in there are dominated by entry

entry’

exit now barely escapes the influence of entry:  
it is in its dominance frontier

B belongs to A’s dominance frontier if: 
• A does not strictly dominate B 
• A dominates a direct predecessor of B

We need a -node right there!Φ
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Dominance frontier
entry

loop

Etest

br_l br_r

loop_end

A

D

G

F

B

C

end

SSA Control Flow Graph

49 / 105



Dominance frontier
entry

loop

Etest

br_l br_r

loop_end

A

D

G

F

B

C

end

For node loop: 
- nodes it dominates 

- its dominance frontier
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Dominance frontier
entry

loop

Etest

br_l br_r

loop_end

A

D

G

F

B

C

end
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Dominance frontier
entry

loop

Etest

br_l br_r

loop_end

A

D

G

F

B

C

end
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Dominance frontier
entry

loop

Etest

br_l br_r

loop_end

A

D

G

F

B

C

end
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Computing dominators

A

N

B

P
If P dominates A and B, then P dominates N
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Computing dominators

A

N

B

P
If P dominates A and B, then P dominates N
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Computing dominators

A

N

B

P
If P dominates A and B, then P dominates N

If P dominates N, then P dominates A and B
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Computing dominators

A

N

B

P
If P dominates A and B, then P dominates N

If P dominates N, then P dominates A and B
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Computing dominators

A

N

B

P
If P dominates A and B, then P dominates N

If P dominates N, then P dominates A and B

D[n] ≜ {n} ∪ ( ⋂
p∈pred(n)

D[p] )

D[entry] ≜ {entry}

Let D[n] be the set of nodes dominating n

As is traditional, this system of equations  
can be solve by iteration¹
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Computing dominators

A

N

B

P
If P dominates A and B, then P dominates N

If P dominates N, then P dominates A and B

D[n] ≜ {n} ∪ ( ⋂
p∈pred(n)

D[p] )

D[entry] ≜ {entry}

Let D[n] be the set of nodes dominating n

As is traditional, this system of equations  
can be solve by iteration¹

¹: For a more efficient algorithm, see Lengauer and Tarjan’s 1979

“A fast algorithm for finding  dominators in a flowgraph”

Complexity?

SSA Control Flow Graph

59 / 105



Computing the dominance frontier

computeDF(n) ::= 
  S <- {y | y successor of n in G but not in DT} 
  for c in children(n) in DT: 
    computeDF(c) 
    for each w in DF[c]: 
      if n does not dominate w: 
        S <- S  {w} 
  DF[n] <- S 

∪

G : ambient cfg 
DT: Dominance Tree of G 
DF: map from nodes to sets of nodes

DF ::= computeDF(entry)

SSA Control Flow Graph
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Computing the dominance frontier

computeDF(n) ::= 
  S <- {y | y successor of n in G but not in DT} 
  for c in children(n) in DT: 
    computeDF(c) 
    for each w in DF[c]: 
      if n does not dominate w: 
        S <- S  {w} 
  DF[n] <- S 

∪

G : ambient cfg 
DT: Dominance Tree of G 
DF: map from nodes to sets of nodes

DF ::= computeDF(entry)

“Obvious”, immediate frontier
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Computing the dominance frontier

computeDF(n) ::= 
  S <- {y | y successor of n in G but not in DT} 
  for c in children(n) in DT: 
    computeDF(c) 
    for each w in DF[c]: 
      if n does not dominate w: 
        S <- S  {w} 
  DF[n] <- S 

∪

G : ambient cfg 
DT: Dominance Tree of G 
DF: map from nodes to sets of nodes

DF ::= computeDF(entry)

“Obvious”, immediate frontier

The rest of the frontier is inherited 
 from the other children
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Computing the dominance frontier

computeDF(n) ::= 
  S <- {y | y successor of n in G but not in DT} 
  for c in children(n) in DT: 
    computeDF(c) 
    for each w in DF[c]: 
      if n does not dominate w: 
        S <- S  {w} 
  DF[n] <- S 

∪

G : ambient cfg 
DT: Dominance Tree of G 
DF: map from nodes to sets of nodes

DF ::= computeDF(entry)

“Obvious”, immediate frontier

The rest of the frontier is inherited 
 from the other children
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Computing the dominance frontier

computeDF(n) ::= 
  S <- {y | y successor of n in G but not in DT} 
  for c in children(n) in DT: 
    computeDF(c) 
    for each w in DF[c]: 
      if n does not dominate w: 
        S <- S  {w} 
  DF[n] <- S 

∪

G : ambient cfg 
DT: Dominance Tree of G 
DF: map from nodes to sets of nodes

DF ::= computeDF(entry)

“Obvious”, immediate frontier

The rest of the frontier is inherited 
 from the other children

We kickstart the pass from the entry
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Computing the dominance frontier
entry

loop

Etest

br_l br_r

loop_end

A

D

G

F

B

C

end

SSA Control Flow Graph

65 / 105



Computing the dominance frontier
entry

loop

Etest

br_l br_r

loop_end

A

D

G

F

B

C

end

Can you pause and run 
the algorithm?
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Computing the dominance frontier
entry

loop

Etest

br_l br_r

loop_end

A

D

G

F

B

C

end
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Taking stock

• The key difficulty is to figure out where exactly -nodes are needed 
• We observed the dominance frontier of a node seems to be the right notion  
• We saw how to construct the dominance frontier,  
 based on the construction of the dominance tree

Φ

We want to convert a cfg to SSA-form

We can now turn to the construction!
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Exemple taken from the SSA book
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Inserting -nodesΦ

for x in Vars: 
   for d in Defs(x): 
       for b in DF(d): 
           if there are no -node associated to x in b: 
              add one such -node 
              add b to Defs(x) 
           

Φ
Φ

Insert-phi ::=
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   for d in Defs(x): 
       for b in DF(d): 
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Φ
Φ

We have not yet renamed: x can have several def-sitesInsert-phi ::=
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Inserting -nodesΦ

for x in Vars: 
   for d in Defs(x): 
       for b in DF(d): 
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              add b to Defs(x) 
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A -node is a new definition site!Φ
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Inserting -nodesΦ

for x in Vars: 
   for d in Defs(x): 
       for b in DF(d): 
           if there are no -node associated to x in b: 
              add one such -node 
              add b to Defs(x) 
           

Φ
Φ

We have not yet renamed: x can have several def-sites

Blocks containing at least one def-site of x

A -node is a new definition site!Φ

Insert-phi ::=

Convince yourself it converges!
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Exemple taken from the SSA book
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Exemple taken from the SSA book
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Exemple taken from the SSA book
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Renaming variables

rename_aux(block) ::= 
  for ins := y <- e in instr(block): 
    for each var x in e, replace x by stack[x] 
    generate a fresh name y’ for y 
    push y’ on top of stack[y] 
  for each s successor of block: 
    for each -node p of s: 
      if x is read coming from block, replace x with stack[x] 
 for each successor b of block in the DT: 
   rename_aux(b) 
  pop from stack all variables introduced in this function call 

Φ

stack[x] : for each variable, we maintain a stack of names (“x_i”)

rename() ::= rename_aux(entry)
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Renaming variables
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Exemple taken from the SSA book
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Converting out of SSA form
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From SSA to machine code

Processors do not support -nodes, we need to compile them away!Φ
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From SSA to machine code

Processors do not support -nodes, we need to compile them away!Φ

a <- (bl:a1,br:a2) Φbk:
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From SSA to machine code

Processors do not support -nodes, we need to compile them away!Φ

a1 <- … a2 <- … 

a <- (bl:a1,br:a2) Φbk:
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From SSA to machine code

Processors do not support -nodes, we need to compile them away!Φ

a <- a1 a <- a2

a1 <- … a2 <- … 

A good register allocator should then take care of eliminating needlessly introduced mov

bk:
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LAB: CFG + SSA

1 SSA Control Flow Graph

2 LAB: CFG + SSA

3 Exercises
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LAB: CFG + SSA

Code Generation

LinearCode Target

CFG

In previous labs

CFG SSA CFG

In next labs
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LAB: CFG + SSA

Steps

1 Implement Leader algorithm (from Linear code to CFG)

2 Implement SSA entry (dominance frontier and ϕ-insertion)

3 Implement SSA exit
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Exercises

1 SSA Control Flow Graph

2 LAB: CFG + SSA

3 Exercises
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Exercises

To SSA and back again

i=1; j=1; k=0;

while (k < 100) {

if (j < 20) {

j=i;

k=k+1;

} {

j=k;

k=k+2;

}}

return j;

(Exercise taken from Fernando Pereira)

1 Draw the CFG

2 Compute the Dominance Tree and
the Frontier

3 Convert to SSA

4 Convert out of SSA
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Exercises

To SSA and back again
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Testing dominance in constant time

Text adapted from an exercise designed by Fernando Pereira

We wish to test in constant time whether a given node dominates another.  
We assume that we have already computed the dominance tree, and allow 
ourself to this end a little pre-processing.

Q2. Write an instrumented depth-first traversal labeling each node of the dominance tree with two numbers: 
• N: the order in which that node was visited 
• A: the maximum N among the node’s descendants

Q3. Prove that these annotations can be used to test dominance in constant time. 

H

A

E

I

C

M

K

G
D

B

L

F

JQ1. Draw the dominance tree of the graph on the right
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Exercises

Summary

1 SSA Control Flow Graph

2 LAB: CFG + SSA

3 Exercises

105 / 105


	SSA Control Flow Graph
	LAB: CFG + SSA
	Exercises

