
Compilation (#6a) : SSA

Yannick Zakowski Gabriel Radanne

Master 1, ENS de Lyon et Dpt Info, Lyon1

2024-2025

SSA Control Flow Graph

1 SSA Control Flow Graph

2 LAB: CFG + SSA

3 Exercises

Yannick Zakowski, Gabriel Radanne (M1 - Lyon1 & ENSL) Compilation (#6a) (CAP): SSA 2024-2025 ↞ 2 / 105 ↠

SSA Control Flow Graph

Credits

Source http://homepages.dcc.ufmg.br/~fernando/classes/dcc888/ementa/slides/
StaticSingleAssignment.pdf

The SSA book (collective)

Modern Compiler Implementation in C/Java/ML (Andrew Appel)

Fernando Magno Quintao Pereira’s course
https://www.youtube.com/user/pronesto/videos

Adrian Sampson’s course
https://www.cs.cornell.edu/courses/cs6120/2020fa/

Yannick Zakowski, Gabriel Radanne (M1 - Lyon1 & ENSL) Compilation (#6a) (CAP): SSA 2024-2025 ↞ 3 / 105 ↠

http://homepages.dcc.ufmg.br/~fernando/classes/dcc888/ementa/slides/StaticSingleAssignment.pdf
http://homepages.dcc.ufmg.br/~fernando/classes/dcc888/ementa/slides/StaticSingleAssignment.pdf
https://www.youtube.com/user/pronesto/videos
https://www.cs.cornell.edu/courses/cs6120/2020fa/

Motivation: It’s all about information

Compilers alternate between two tasks:
1. computing some information (invariants) of the program
2. using this information to justify some program transformations

Dataflow analyses associate facts to every program point:
* a fact is associated to a definition-site of a variable
* a fact is exploited at a use-site of a variable

x <- 3
y <- 2 * a
jmp (x > y)

x <- 3
y <- 2 * a y <- y * y

z <- x + y

SSA Control Flow Graph

4 / 105

Motivation: It’s all about information

Compilers alternate between two tasks:
1. computing some information (invariants) of the program
2. using this information to justify some program transformations

Dataflow analyses associate facts to every program point:
* a fact is associated to a definition-site of a variable
* a fact is exploited at a use-site of a variable

x <- 3
y <- 2 * a
jmp (x > y)

x <- 3
y <- 2 * a y <- y * y

z <- x + y

x = 3
y is even

SSA Control Flow Graph

5 / 105

Motivation: It’s all about information

Compilers alternate between two tasks:
1. computing some information (invariants) of the program
2. using this information to justify some program transformations

Dataflow analyses associate facts to every program point:
* a fact is associated to a definition-site of a variable
* a fact is exploited at a use-site of a variable

x <- 3
y <- 2 * a
jmp (x > y)

x <- 3
y <- 2 * a y <- y * y

z <- x + y

x = 3
y is even

What do we know about x and y?

z = ?

SSA Control Flow Graph

6 / 105

Motivation: It’s all about information

Compilers alternate between two tasks:
1. computing some information (invariants) of the program
2. using this information to justify some program transformations

Dataflow analyses associate facts to every program point:
* a fact is associated to a definition-site of a variable
* a fact is exploited at a use-site of a variable

One solution: use a data-structure, the def-use and use-def chains

x <- 3
y <- 2 * a
jmp (x > y)

x <- 3
y <- 2 * a y <- y * y

z <- x + y

M def and N use of a variable: O(N * M) space and time

SSA Control Flow Graph

7 / 105

Motivation: It’s all about information

Compilers alternate between two tasks:
1. computing some information (invariants) of the program
2. using this information to justify some program transformations

Dataflow analyses associate facts to every program point:
* a fact is associated to a definition-site of a variable
* a fact is exploited at a use-site of a variable

One solution: use a data-structure, the def-use and use-def chains

x <- 3
y <- 2 * a
jmp (x > y)

x <- 3
y <- 2 * a y <- y * y

z <- x + y

M def and N use of a variable: O(N * M) space and time

Could we enforce this structure to be trivial by definition? Sure, let’s have M = 1!

SSA Control Flow Graph

8 / 105

Motivation: It’s all about information

Compilers alternate between two tasks:
1. computing some information (invariants) of the program
2. using this information to justify some program transformations

Dataflow analyses associate facts to every program point:
* a fact is associated to a definition-site of a variable
* a fact is exploited at a use-site of a variable

One solution: use a data-structure, the def-use and use-def chains

x <- 3
y <- 2 * a
jmp (x > y)

x <- 3
y <- 2 * a y <- y * y

z <- x + y

M def and N use of a variable: O(N * M) space and time

Could we enforce this structure to be trivial by definition? Sure, let’s have M = 1!

We want to enforce an invariant by construction: we want an intermediate representation

SSA Control Flow Graph

9 / 105

Single Static Assignment (SSA)

¹ Dynamically, it can be defined many times: it is not “Single Assignment”!

Each variable has exactly one definition in the syntax¹

Use-def chains are explicit in the syntax of the program -> Many optimizations are simplified

SSA Control Flow Graph

10 / 105

Single Static Assignment (SSA)

¹ Dynamically, it can be defined many times: it is not “Single Assignment”!

Each variable has exactly one definition in the syntax¹

Use-def chains are explicit in the syntax of the program -> Many optimizations are simplified

We will consider here more specifically Control Flow Graphs in SSA form

Introduced in 1988:
“Global value numbers and redundant computations” by Rosen, Wegman and Zadeck

Used in most modern compilers: GCC, llvm, HotSpot…

SSA Control Flow Graph

11 / 105

Converting to SSA form: informally
SSA Control Flow Graph

12 / 105

Converting to SSA form: informally

Each variable has exactly one definition in the syntax

SSA Control Flow Graph

13 / 105

Converting straight code

a <- x + 1
b <- a * 2
a <- a + b
c <- x * a
b <- c - 1

bl:

SSA Control Flow Graph

14 / 105

Converting straight code

a <- x + 1
b <- a * 2
a <- a + b
c <- x * a
b <- c - 1

bl:

SSA Control Flow Graph

15 / 105

Converting straight code

a <- x + 1
b <- a * 2
a <- a + b
c <- x * a
b <- c - 1

a1 <- x + 1
b1 <- a1 * 2

 a2 <- a1 + b1
 c1 <- x * a2
b2 <- c1 - 1

bl:bl:

SSA Control Flow Graph

16 / 105

Converting straight code

Rule 1: use a fresh index at each def-site

a <- x + 1
b <- a * 2
a <- a + b
c <- x * a
b <- c - 1

a1 <- x + 1
b1 <- a1 * 2

 a2 <- a1 + b1
 c1 <- x * a2
b2 <- c1 - 1

bl:bl:

SSA Control Flow Graph

17 / 105

Converting straight code

Rule 1: use a fresh index at each def-site

a <- x + 1
b <- a * 2
a <- a + b
c <- x * a
b <- c - 1

a1 <- x + 1
b1 <- a1 * 2

 a2 <- a1 + b1
 c1 <- x * a2
b2 <- c1 - 1

bl:bl:

SSA Control Flow Graph

18 / 105

Converting straight code

Rule 1: use a fresh index at each def-site

Rule 2: use the most recent definition at each use-site

a <- x + 1
b <- a * 2
a <- a + b
c <- x * a
b <- c - 1

a1 <- x + 1
b1 <- a1 * 2

 a2 <- a1 + b1
 c1 <- x * a2
b2 <- c1 - 1

bl:bl:

SSA Control Flow Graph

19 / 105

a1 <- x + 1
b1 <- a1 * 2

 a2 <- a1 + b1
 c1 <- x * a2
b2 <- c1 - 1

a <- x + 1
b <- a * 2
a <- a + b
c <- x * a
b <- c - 1

Converting disjunction points

Rule 1: use a fresh index at each def-site

Rule 2: use the most recent definition at each use-site

x <- 3 * y
jmp (x = 0)

a <- x - y
d <- a * 2

bi:

bl:
br:

SSA Control Flow Graph

20 / 105

a1 <- x + 1
b1 <- a1 * 2

 a2 <- a1 + b1
 c1 <- x * a2
b2 <- c1 - 1

a <- x + 1
b <- a * 2
a <- a + b
c <- x * a
b <- c - 1

Converting disjunction points

Rule 1: use a fresh index at each def-site

Rule 2: use the most recent definition at each use-site

x <- 3 * y
jmp (x = 0)

a <- x - y
d <- a * 2

x <- 3 * y
jmp (x = 0)

a3 <- x - y
d <- a3 * 2

br:
bl:

bi:bi:

bl:
br:

SSA Control Flow Graph

21 / 105

a1 <- x + 1
b1 <- a1 * 2

 a2 <- a1 + b1
 c1 <- x * a2
b2 <- c1 - 1

a <- x + 1
b <- a * 2
a <- a + b
c <- x * a
b <- c - 1

Converting disjunction points

Rule 1: use a fresh index at each def-site

Rule 2: use the most recent definition at each use-site

x <- 3 * y
jmp (x = 0)

a <- x - y
d <- a * 2

x <- 3 * y
jmp (x = 0)

a3 <- x - y
d <- a3 * 2

br:
bl:

bi:

Freshness is global

bi:

bl:
br:

SSA Control Flow Graph

22 / 105

Converting merging points:
-nodesΦ

Rule 1: use a fresh index at each def-site

Rule 2: use the most recent definition at each use-site

a1 <- x + 1
b1 <- a1 * 2

 a2 <- a1 + b1
 c1 <- x * a2
b2 <- c1 - 1

a <- x + 1
b <- a * 2
a <- a + b
c <- x * a
b <- c - 1

x <- 3 * y
jmp (x = 0)

a <- x - y
d <- a * 2

x <- 3 * y
jmp (x = 0)

a3 <- x - y
d <- a3 * 2

z <- a * 2

bi:

bl:
br: br:

bl:

bi:

bf:

SSA Control Flow Graph

23 / 105

Converting merging points:
-nodesΦ

Rule 1: use a fresh index at each def-site

Rule 2: use the most recent definition at each use-site
?

a1 <- x + 1
b1 <- a1 * 2

 a2 <- a1 + b1
 c1 <- x * a2
b2 <- c1 - 1

a <- x + 1
b <- a * 2
a <- a + b
c <- x * a
b <- c - 1

x <- 3 * y
jmp (x = 0)

a <- x - y
d <- a * 2

x <- 3 * y
jmp (x = 0)

a3 <- x - y
d <- a3 * 2

z <- a * 2

bi:

bl:
br: br:

bl:

bi:

bf:

SSA Control Flow Graph

24 / 105

Converting merging points:
-nodesΦ

Rule 1: use a fresh index at each def-site

Rule 2: use the most recent definition at each use-site

a1 <- x + 1
b1 <- a1 * 2

 a2 <- a1 + b1
 c1 <- x * a2
b2 <- c1 - 1

a <- x + 1
b <- a * 2
a <- a + b
c <- x * a
b <- c - 1

x <- 3 * y
jmp (x = 0)

a <- x - y
d <- a * 2

x <- 3 * y
jmp (x = 0)

a3 <- x - y
d <- a3 * 2

z <- a * 2

Rule 3: at merge points, introduce -nodesΦ

a4 <- (bl:a2,br:a3)
z <- a4 * 2

Φ
bf:

bi:

bl:
br: br:

bl:

bi:

bf:

SSA Control Flow Graph

25 / 105

Converting merging points:
-nodesΦ

a1 <- x + 1
b1 <- a1 * 2

 a2 <- a1 + b1
 c1 <- x * a2
b2 <- c1 - 1

a <- x + 1
b <- a * 2
a <- a + b
c <- x * a
b <- c - 1

x <- 3 * y
jmp (x = 0)

a <- x - y
d <- a * 2

x <- 3 * y
jmp (x = 0)

a3 <- x - y
d <- a3 * 2

z <- a * 2

Goal: to decide when to introduce -nodesΦ
a4 <- (bl:a2,br:a3)

z <- a4 * 2
Φ

bf:

bi:

bl:
br: br:

bl:

bi:

bf:

SSA Control Flow Graph

26 / 105

Converting merging points:
-nodesΦ

a1 <- x + 1
b1 <- a1 * 2

 a2 <- a1 + b1
 c1 <- x * a2
b2 <- c1 - 1

a <- x + 1
b <- a * 2
a <- a + b
c <- x * a
b <- c - 1

x <- 3 * y
jmp (x = 0)

a <- x - y
d <- a * 2

x <- 3 * y
jmp (x = 0)

a3 <- x - y
d <- a3 * 2

z <- a * 2

Goal: to decide when to introduce -nodesΦ
One per variable at every join point?

a4 <- (bl:a2,br:a3)
z <- a4 * 2

Φ
bf:

bi:

bl:
br: br:

bl:

bi:

bf:

SSA Control Flow Graph

27 / 105

Converting merging points:
-nodesΦ

a1 <- x + 1
b1 <- a1 * 2

 a2 <- a1 + b1
 c1 <- x * a2
b2 <- c1 - 1

a <- x + 1
b <- a * 2
a <- a + b
c <- x * a
b <- c - 1

x <- 3 * y
jmp (x = 0)

a <- x - y
d <- a * 2

x <- 3 * y
jmp (x = 0)

a3 <- x - y
d <- a3 * 2

z <- a * 2 a4 <- (a2,a3)
z <- a4 * 2

Φ

Goal: to decide when to introduce few -nodesΦ
One per variable at every join point?

bi:

bl:
br: br:

bl:

bi:

bf: bf:

SSA Control Flow Graph

28 / 105

Converting to SSA form: an algorithm

SSA Control Flow Graph

29 / 105

Converting to SSA form: an algorithm

Goal: to decide when to introduce few -nodesΦ

SSA Control Flow Graph

30 / 105

The domination relation

entry

loop

exittest

br_l br_r

loop_end

A dominates B if any path from entry to B contains A

SSA Control Flow Graph

31 / 105

The domination relation

entry

loop

exittest

br_l br_r

loop_end

A dominates B if any path from entry to B contains A

Can you annotate the nodes
with their dominators?

SSA Control Flow Graph

32 / 105

The domination relation

entry

loop

exittest

br_l br_r

loop_end

A dominates B if any path from entry to B contains A

SSA Control Flow Graph

33 / 105

The domination relation

entry

loop

exittest

br_l br_r

loop_end

A dominates B if any path from entry to B contains A{entry}

It’s reflexive

SSA Control Flow Graph

34 / 105

The domination relation

entry

loop

exittest

br_l br_r

loop_end

A dominates B if any path from entry to B contains A

{entry,loop}

{entry}

It’s reflexive

SSA Control Flow Graph

35 / 105

The domination relation

entry

loop

exittest

br_l br_r

loop_end

A dominates B if any path from entry to B contains A

{entry,loop}

{entry,loop,exit}

{entry}

It’s reflexive

SSA Control Flow Graph

36 / 105

The domination relation

entry

loop

exittest

br_l br_r

loop_end

A dominates B if any path from entry to B contains A

{entry,loop}

{entry,loop,exit}

{entry,loop,test,br_r}

{entry}

It’s reflexive

SSA Control Flow Graph

37 / 105

The domination relation

entry

loop

exittest

br_l br_r

loop_end

A dominates B if any path from entry to B contains A

{entry,loop}

{entry,loop,exit}

{entry,loop,test,br_r}

{entry,loop,test,loop_end}

{entry}

It’s reflexive

SSA Control Flow Graph

38 / 105

The domination relation

entry

loop

exittest

br_l br_r

loop_end

A dominates B if any path from entry to B goes through A

{entry,loop}

{entry,loop,exit}

{entry,loop,test,loop_end}

The domination tree stores the domination relation
A is parent to B if:
• A strictly dominates B
• A does not strictly dominates any C

that strictly dominates B

A strictly dominates B if A dominates B and A is not B

{entry,loop,test,br_r}

SSA Control Flow Graph

39 / 105

The domination relation

entry

loop

exittest

br_l br_r

loop_end

A dominates B if any path from entry to B goes through A

{entry,loop}

{entry,loop,exit}

{entry,loop,test,loop_end}

The domination tree stores the domination relation
A is parent to B if:
• A strictly dominates B
• A does not strictly dominates any C

that strictly dominates B

A strictly dominates B if A dominates B and A is not B

Can you build the domination tree
of the CFG to the left?

{entry,loop,test,br_r}

SSA Control Flow Graph

40 / 105

The domination relation

entry

loop

exittest

br_l br_r

loop_end

A dominates B if any path from entry to B goes through A

{entry,loop}

{entry,loop,exit}

{entry,loop,test,loop_end}

The domination tree stores the domination relation
A is parent to B if:
• A strictly dominates B
• A does not strictly dominates any C

that strictly dominates B

A strictly dominates B if A dominates B and A is not B

{entry,loop,test,br_r}

SSA Control Flow Graph

41 / 105

The domination relation

entry

loop

exittest

br_l br_r

loop_end

A dominates B if any path from entry to B goes through A

{entry,loop}

{entry,loop,exit}

{entry,loop,test,loop_end}

The domination tree stores the domination relation
A is parent to B if:
• A strictly dominates B
• A does not strictly dominates any C

that strictly dominates B

A strictly dominates B if A dominates B and A is not B

entry

loop

exittest

br_l br_r loop_end

{entry,loop,test,br_r}

SSA Control Flow Graph

42 / 105

Dominance frontier

entry

loop

exittest

br_l br_r

loop_end

B belongs to A’s dominance frontier if:
• A does not strictly dominate B
• A dominates a direct predecessor of B

SSA Control Flow Graph

43 / 105

All nodes in there are dominated by entry

Dominance frontier

entry

loop

exittest

br_l br_r

loop_end

B belongs to A’s dominance frontier if:
• A does not strictly dominate B
• A dominates a direct predecessor of B

SSA Control Flow Graph

44 / 105

All nodes in there are dominated by entry

Dominance frontier

entry

loop

exittest

br_l br_r

loop_end

B belongs to A’s dominance frontier if:
• A does not strictly dominate B
• A dominates a direct predecessor of Bentry’

SSA Control Flow Graph

45 / 105

All nodes in there are dominated by entry

Dominance frontier

entry

loop

exittest

br_l br_r

loop_end

B belongs to A’s dominance frontier if:
• A does not strictly dominate B
• A dominates a direct predecessor of Bentry’

SSA Control Flow Graph

46 / 105

Dominance frontier

entry

loop

exittest

br_l br_r

loop_end All nodes in there are dominated by entry

entry’

exit now barely escapes the influence of entry:
it is in its dominance frontier

B belongs to A’s dominance frontier if:
• A does not strictly dominate B
• A dominates a direct predecessor of B

SSA Control Flow Graph

47 / 105

Dominance frontier

entry

loop

exittest

br_l br_r

loop_end All nodes in there are dominated by entry

entry’

exit now barely escapes the influence of entry:
it is in its dominance frontier

B belongs to A’s dominance frontier if:
• A does not strictly dominate B
• A dominates a direct predecessor of B

We need a -node right there!Φ

SSA Control Flow Graph

48 / 105

Dominance frontier
entry

loop

Etest

br_l br_r

loop_end

A

D

G

F

B

C

end

SSA Control Flow Graph

49 / 105

Dominance frontier
entry

loop

Etest

br_l br_r

loop_end

A

D

G

F

B

C

end

For node loop:
- nodes it dominates

- its dominance frontier

SSA Control Flow Graph

50 / 105

Dominance frontier
entry

loop

Etest

br_l br_r

loop_end

A

D

G

F

B

C

end

SSA Control Flow Graph

51 / 105

Dominance frontier
entry

loop

Etest

br_l br_r

loop_end

A

D

G

F

B

C

end

SSA Control Flow Graph

52 / 105

Dominance frontier
entry

loop

Etest

br_l br_r

loop_end

A

D

G

F

B

C

end

SSA Control Flow Graph

53 / 105

Computing dominators

A

N

B

P
If P dominates A and B, then P dominates N

SSA Control Flow Graph

54 / 105

Computing dominators

A

N

B

P
If P dominates A and B, then P dominates N

SSA Control Flow Graph

55 / 105

Computing dominators

A

N

B

P
If P dominates A and B, then P dominates N

If P dominates N, then P dominates A and B

SSA Control Flow Graph

56 / 105

Computing dominators

A

N

B

P
If P dominates A and B, then P dominates N

If P dominates N, then P dominates A and B

SSA Control Flow Graph

57 / 105

Computing dominators

A

N

B

P
If P dominates A and B, then P dominates N

If P dominates N, then P dominates A and B

D[n] ≜ {n} ∪ (⋂
p∈pred(n)

D[p])

D[entry] ≜ {entry}

Let D[n] be the set of nodes dominating n

As is traditional, this system of equations
can be solve by iteration¹

SSA Control Flow Graph

58 / 105

Computing dominators

A

N

B

P
If P dominates A and B, then P dominates N

If P dominates N, then P dominates A and B

D[n] ≜ {n} ∪ (⋂
p∈pred(n)

D[p])

D[entry] ≜ {entry}

Let D[n] be the set of nodes dominating n

As is traditional, this system of equations
can be solve by iteration¹

¹: For a more efficient algorithm, see Lengauer and Tarjan’s 1979

“A fast algorithm for finding dominators in a flowgraph”

Complexity?

SSA Control Flow Graph

59 / 105

Computing the dominance frontier

computeDF(n) ::=
 S <- {y | y successor of n in G but not in DT}
 for c in children(n) in DT:
 computeDF(c)
 for each w in DF[c]:
 if n does not dominate w:
 S <- S {w}
 DF[n] <- S

∪

G : ambient cfg
DT: Dominance Tree of G
DF: map from nodes to sets of nodes

DF ::= computeDF(entry)

SSA Control Flow Graph

60 / 105

Computing the dominance frontier

computeDF(n) ::=
 S <- {y | y successor of n in G but not in DT}
 for c in children(n) in DT:
 computeDF(c)
 for each w in DF[c]:
 if n does not dominate w:
 S <- S {w}
 DF[n] <- S

∪

G : ambient cfg
DT: Dominance Tree of G
DF: map from nodes to sets of nodes

DF ::= computeDF(entry)

“Obvious”, immediate frontier

SSA Control Flow Graph

61 / 105

Computing the dominance frontier

computeDF(n) ::=
 S <- {y | y successor of n in G but not in DT}
 for c in children(n) in DT:
 computeDF(c)
 for each w in DF[c]:
 if n does not dominate w:
 S <- S {w}
 DF[n] <- S

∪

G : ambient cfg
DT: Dominance Tree of G
DF: map from nodes to sets of nodes

DF ::= computeDF(entry)

“Obvious”, immediate frontier

The rest of the frontier is inherited
 from the other children

SSA Control Flow Graph

62 / 105

Computing the dominance frontier

computeDF(n) ::=
 S <- {y | y successor of n in G but not in DT}
 for c in children(n) in DT:
 computeDF(c)
 for each w in DF[c]:
 if n does not dominate w:
 S <- S {w}
 DF[n] <- S

∪

G : ambient cfg
DT: Dominance Tree of G
DF: map from nodes to sets of nodes

DF ::= computeDF(entry)

“Obvious”, immediate frontier

The rest of the frontier is inherited
 from the other children

SSA Control Flow Graph

63 / 105

Computing the dominance frontier

computeDF(n) ::=
 S <- {y | y successor of n in G but not in DT}
 for c in children(n) in DT:
 computeDF(c)
 for each w in DF[c]:
 if n does not dominate w:
 S <- S {w}
 DF[n] <- S

∪

G : ambient cfg
DT: Dominance Tree of G
DF: map from nodes to sets of nodes

DF ::= computeDF(entry)

“Obvious”, immediate frontier

The rest of the frontier is inherited
 from the other children

We kickstart the pass from the entry

SSA Control Flow Graph

64 / 105

Computing the dominance frontier
entry

loop

Etest

br_l br_r

loop_end

A

D

G

F

B

C

end

SSA Control Flow Graph

65 / 105

Computing the dominance frontier
entry

loop

Etest

br_l br_r

loop_end

A

D

G

F

B

C

end

Can you pause and run
the algorithm?

SSA Control Flow Graph

66 / 105

Computing the dominance frontier
entry

loop

Etest

br_l br_r

loop_end

A

D

G

F

B

C

end

SSA Control Flow Graph

67 / 105

Taking stock

• The key difficulty is to figure out where exactly -nodes are needed
• We observed the dominance frontier of a node seems to be the right notion
• We saw how to construct the dominance frontier,
 based on the construction of the dominance tree

Φ

We want to convert a cfg to SSA-form

We can now turn to the construction!

SSA Control Flow Graph

68 / 105

Exemple taken from the SSA book

SSA Control Flow Graph

69 / 105

Inserting -nodesΦ

for x in Vars:
 for d in Defs(x):
 for b in DF(d):
 if there are no -node associated to x in b:
 add one such -node
 add b to Defs(x)

Φ
Φ

Insert-phi ::=

SSA Control Flow Graph

70 / 105

Inserting -nodesΦ

for x in Vars:
 for d in Defs(x):
 for b in DF(d):
 if there are no -node associated to x in b:
 add one such -node
 add b to Defs(x)

Φ
Φ

We have not yet renamed: x can have several def-sitesInsert-phi ::=

SSA Control Flow Graph

71 / 105

Inserting -nodesΦ

for x in Vars:
 for d in Defs(x):
 for b in DF(d):
 if there are no -node associated to x in b:
 add one such -node
 add b to Defs(x)

Φ
Φ

We have not yet renamed: x can have several def-sites

Blocks containing at least one def-site of x
Insert-phi ::=

SSA Control Flow Graph

72 / 105

Inserting -nodesΦ

for x in Vars:
 for d in Defs(x):
 for b in DF(d):
 if there are no -node associated to x in b:
 add one such -node
 add b to Defs(x)

Φ
Φ

We have not yet renamed: x can have several def-sites

Blocks containing at least one def-site of x

A -node is a new definition site!Φ

Insert-phi ::=

SSA Control Flow Graph

73 / 105

Inserting -nodesΦ

for x in Vars:
 for d in Defs(x):
 for b in DF(d):
 if there are no -node associated to x in b:
 add one such -node
 add b to Defs(x)

Φ
Φ

We have not yet renamed: x can have several def-sites

Blocks containing at least one def-site of x

A -node is a new definition site!Φ

Insert-phi ::=

Convince yourself it converges!

SSA Control Flow Graph

74 / 105

Exemple taken from the SSA book

SSA Control Flow Graph

75 / 105

Exemple taken from the SSA book

SSA Control Flow Graph

76 / 105

Exemple taken from the SSA book

SSA Control Flow Graph

77 / 105

Exemple taken from the SSA book

SSA Control Flow Graph

78 / 105

Exemple taken from the SSA book

SSA Control Flow Graph

79 / 105

Exemple taken from the SSA book

SSA Control Flow Graph

80 / 105

Exemple taken from the SSA book

SSA Control Flow Graph

81 / 105

Exemple taken from the SSA book

SSA Control Flow Graph

82 / 105

Exemple taken from the SSA book

SSA Control Flow Graph

83 / 105

Exemple taken from the SSA book

SSA Control Flow Graph

84 / 105

Exemple taken from the SSA book

SSA Control Flow Graph

85 / 105

Renaming variables

rename_aux(block) ::=
 for ins := y <- e in instr(block):
 for each var x in e, replace x by stack[x]
 generate a fresh name y’ for y
 push y’ on top of stack[y]
 for each s successor of block:
 for each -node p of s:
 if x is read coming from block, replace x with stack[x]
 for each successor b of block in the DT:
 rename_aux(b)
 pop from stack all variables introduced in this function call

Φ

stack[x] : for each variable, we maintain a stack of names (“x_i”)

rename() ::= rename_aux(entry)

SSA Control Flow Graph

86 / 105

Renaming variables

rename_aux(block) ::=
 for ins := y <- e in instr(block):
 for each var x in e, replace x by stack[x]
 generate a fresh name y’ for y
 push y’ on top of stack[y]
 for each s successor of block:
 for each -node p of s:
 if x is read coming from block, replace x with stack[x]
 for each successor b of block in the DT:
 rename_aux(b)
 pop from stack all variables introduced in this function call

Φ

stack[x] : for each variable, we maintain a stack of names (“x_i”)

rename() ::= rename_aux(entry)

SSA Control Flow Graph

87 / 105

Renaming variables

rename_aux(block) ::=
 for ins := y <- e in instr(block):
 for each var x in e, replace x by stack[x]
 generate a fresh name y’ for y
 push y’ on top of stack[y]
 for each s successor of block:
 for each -node p of s:
 if x is read coming from block, replace x with stack[x]
 for each successor b of block in the DT:
 rename_aux(b)
 pop from stack all variables introduced in this function call

Φ

stack[x] : for each variable, we maintain a stack of names (“x_i”)

rename() ::= rename_aux(entry)

SSA Control Flow Graph

88 / 105

Renaming variables

rename_aux(block) ::=
 for ins := y <- e in instr(block):
 for each var x in e, replace x by stack[x]
 generate a fresh name y’ for y
 push y’ on top of stack[y]
 for each s successor of block:
 for each -node p of s:
 if x is read coming from block, replace x with stack[x]
 for each successor b of block in the DT:
 rename_aux(b)
 pop from stack all variables introduced in this function call

Φ

stack[x] : for each variable, we maintain a stack of names (“x_i”)

rename() ::= rename_aux(entry)

SSA Control Flow Graph

89 / 105

Renaming variables

rename_aux(block) ::=
 for ins := y <- e in instr(block):
 for each var x in e, replace x by stack[x]
 generate a fresh name y’ for y
 push y’ on top of stack[y]
 for each s successor of block:
 for each -node p of s:
 if x is read coming from block, replace x with stack[x]
 for each successor b of block in the DT:
 rename_aux(b)
 pop from stack all variables introduced in this function call

Φ

stack[x] : for each variable, we maintain a stack of names (“x_i”)

rename() ::= rename_aux(entry)

SSA Control Flow Graph

90 / 105

Exemple taken from the SSA book

SSA Control Flow Graph

91 / 105

Converting out of SSA form

SSA Control Flow Graph

92 / 105

From SSA to machine code

Processors do not support -nodes, we need to compile them away!Φ

SSA Control Flow Graph

93 / 105

From SSA to machine code

Processors do not support -nodes, we need to compile them away!Φ

a <- (bl:a1,br:a2) Φbk:

SSA Control Flow Graph

94 / 105

From SSA to machine code

Processors do not support -nodes, we need to compile them away!Φ

a1 <- … a2 <- …

a <- (bl:a1,br:a2) Φbk:

SSA Control Flow Graph

95 / 105

From SSA to machine code

Processors do not support -nodes, we need to compile them away!Φ

a <- a1 a <- a2

a1 <- … a2 <- …

A good register allocator should then take care of eliminating needlessly introduced mov

bk:

SSA Control Flow Graph

96 / 105

LAB: CFG + SSA

1 SSA Control Flow Graph

2 LAB: CFG + SSA

3 Exercises

97 / 105

LAB: CFG + SSA

Code Generation

LinearCode Target

CFG

In previous labs

CFG SSA CFG

In next labs

98 / 105

LAB: CFG + SSA

Code Generation

LinearCode Target

CFG

In previous labs

CFG SSA CFG

In next labs 98 / 105

LAB: CFG + SSA

Steps

1 Implement Leader algorithm (from Linear code to CFG)

2 Implement SSA entry (dominance frontier and ϕ-insertion)

3 Implement SSA exit

99 / 105

Exercises

1 SSA Control Flow Graph

2 LAB: CFG + SSA

3 Exercises

100 / 105

Exercises

To SSA and back again

i=1; j=1; k=0;

while (k < 100) {

if (j < 20) {

j=i;

k=k+1;

} {

j=k;

k=k+2;

}}

return j;

(Exercise taken from Fernando Pereira)

1 Draw the CFG

2 Compute the Dominance Tree and
the Frontier

3 Convert to SSA

4 Convert out of SSA

101 / 105

Exercises

To SSA and back again

i=1; j=1; k=0;

while (k < 100) {

if (j < 20) {

j=i;

k=k+1;

} {

j=k;

k=k+2;

}}

return j;

102 / 105

Exercises

To SSA and back again

i=1; j=1; k=0;

while (k < 100) {

if (j < 20) {

j=i;

k=k+1;

} {

j=k;

k=k+2;

}}

return j;

103 / 105

Testing dominance in constant time

Text adapted from an exercise designed by Fernando Pereira

We wish to test in constant time whether a given node dominates another.
We assume that we have already computed the dominance tree, and allow
ourself to this end a little pre-processing.

Q2. Write an instrumented depth-first traversal labeling each node of the dominance tree with two numbers:
• N: the order in which that node was visited
• A: the maximum N among the node’s descendants

Q3. Prove that these annotations can be used to test dominance in constant time.

H

A

E

I

C

M

K

G
D

B

L

F

JQ1. Draw the dominance tree of the graph on the right

Exercises

104 / 105

Exercises

Summary

1 SSA Control Flow Graph

2 LAB: CFG + SSA

3 Exercises

105 / 105

	SSA Control Flow Graph
	LAB: CFG + SSA
	Exercises

