Compilation (#6a) : SSA

Yannick Zakowski Gabriel Radanne

Master 1, ENS de Lyon et Dpt Info, Lyon1

2024-2025

2 LAB: CFG + SSA

Credits

Source http://homepages.dcc.ufmg.br/~fernando/classes/dcc888/ementa/slides/ StaticSingleAssignment.pdf

- The SSA book (collective)
- Modern Compiler Implementation in C/Java/ML (Andrew Appel)
- Fernando Magno Quintao Pereira's course https://www.youtube.com/user/pronesto/videos
- Adrian Sampson's course

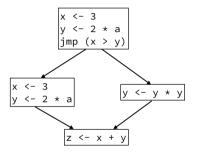
https://www.cs.cornell.edu/courses/cs6120/2020fa/

Compilers alternate between two tasks:

- 1. computing some information (invariants) of the program
- 2. using this information to justify some program transformations

Dataflow analyses associate facts to every program point:

- * a fact is associated to a definition-site of a variable
- * a fact is *exploited* at a use-site of a variable

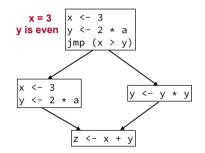


Compilers alternate between two tasks:

- 1. computing some information (invariants) of the program
- 2. using this information to justify some program transformations

Dataflow analyses associate facts to every program point:

- * a fact is associated to a definition-site of a variable
- * a fact is *exploited* at a use-site of a variable

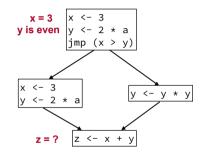


Compilers alternate between two tasks:

- 1. computing some information (invariants) of the program
- 2. using this information to justify some program transformations

Dataflow analyses associate facts to every program point:

- * a fact is associated to a definition-site of a variable
- * a fact is *exploited* at a use-site of a variable



What do we know about x and y?

Compilers alternate between two tasks:

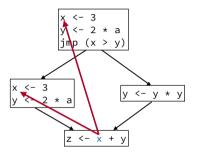
- 1. computing some information (invariants) of the program
- 2. *using* this information to justify some program transformations

Dataflow analyses associate facts to every program point:

- * a fact is associated to a definition-site of a variable
- * a fact is *exploited* at a use-site of a variable

One solution: use a data-structure, the def-use and use-def chains

M def and N use of a variable: O(N * M) space and time



Compilers alternate between two tasks:

- 1. computing some information (invariants) of the program
- 2. *using* this information to justify some program transformations

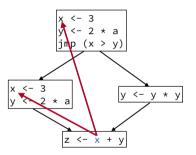
Dataflow analyses associate facts to every program point:

- * a fact is associated to a definition-site of a variable
- * a fact is *exploited* at a use-site of a variable

One solution: use a data-structure, the def-use and use-def chains

M def and N use of a variable: O(N * M) space and time

Could we enforce this structure to be trivial by definition? Sure, let's have M = 1!



Compilers alternate between two tasks:

- 1. computing some information (invariants) of the program
- 2. using this information to justify some program transformations

Dataflow analyses associate facts to every program point:

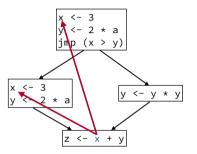
- * a fact is associated to a definition-site of a variable
- * a fact is *exploited* at a use-site of a variable

One solution: use a data-structure, the def-use and use-def chains

M def and N use of a variable: O(N * M) space and time

Could we enforce this structure to be trivial by definition? Sure, let's have M = 1!

We want to enforce an invariant by construction: we want an intermediate representation



Single Static Assignment (SSA)

Each variable has exactly one definition in the syntax¹

Use-def chains are explicit in the syntax of the program -> Many optimizations are simplified

¹ Dynamically, it can be defined many times: it is not "Single Assignment"!

Single Static Assignment (SSA)

Each variable has exactly one definition in the syntax¹

Use-def chains are explicit in the syntax of the program -> Many optimizations are simplified

Introduced in 1988: "Global value numbers and redundant computations" by Rosen, Wegman and Zadeck Used in most modern compilers: GCC, Ilvm, HotSpot...

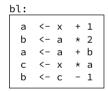
We will consider here more specifically Control Flow Graphs in SSA form

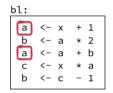
¹ Dynamically, it can be defined many times: it is not "Single Assignment"!

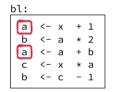
Converting to SSA form: informally

Converting to SSA form: informally

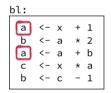
Each variable has exactly one definition in the syntax







bl:				
a1	<-	х	+	1
b1	<-	a1	*	2
a2	<-	a1	+	b1
c1	<-	х	*	a2
b2	<-	c1	-	1

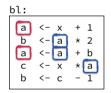


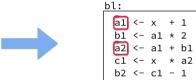
al <- x + 1 b1 <- a1 * 2

a2 <- a1 + b1 c1 <- x * a2

b2 <- c1 - 1

Rule 1: use a fresh index at each def-site



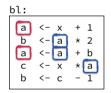


+ 1

<- x

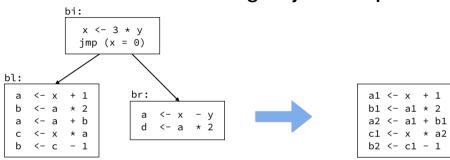
<- a1 * 2

Rule 1: use a fresh index at each def-site



a

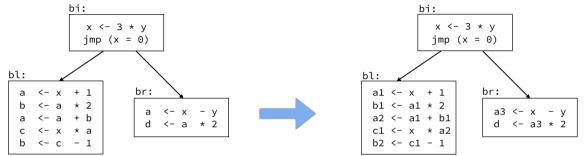
Rule 1: use a fresh index at each def-site



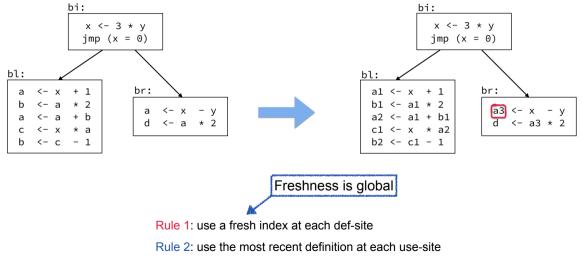
Converting disjunction points

Rule 1: use a fresh index at each def-site

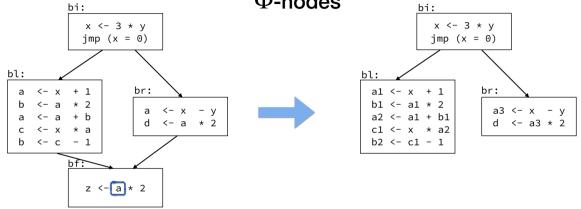
Converting disjunction points



Rule 1: use a fresh index at each def-site

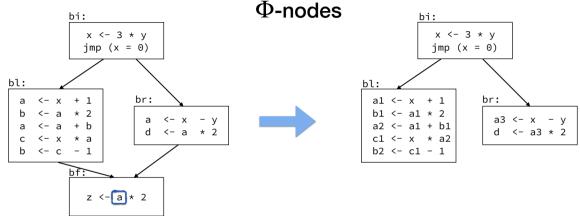


SSA Control Flow Graph Converting merging points: Φ -nodes bi: x <- 3 * v

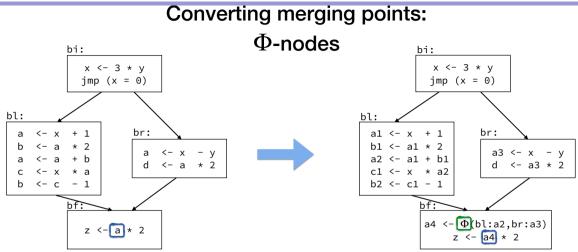


Rule 1: use a fresh index at each def-site

Converting merging points: Φ-nodes



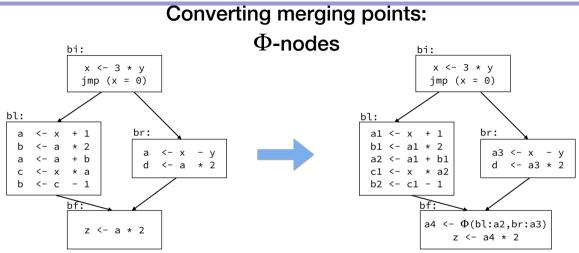
Rule 1: use a fresh index at each def-site



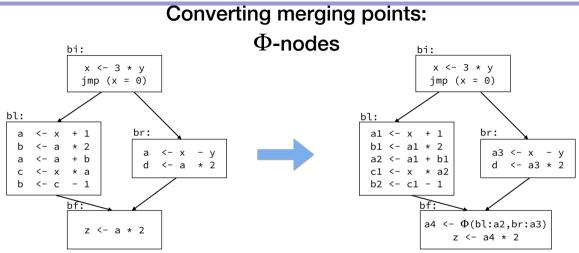
Rule 1: use a fresh index at each def-site

Rule 2: use the most recent definition at each use-site

Rule 3: at merge points, introduce Φ -nodes

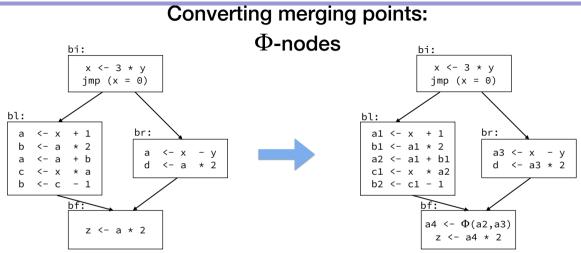


Goal: to decide when to introduce Φ -nodes



Goal: to decide when to introduce Φ -nodes

One per variable at every join point?



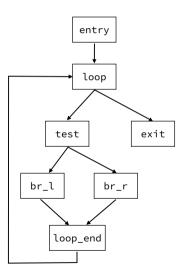
Goal: to decide when to introduce *few* Φ -nodes

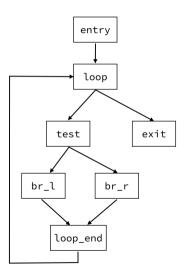
One per variable at every join point?

Converting to SSA form: an algorithm

Converting to SSA form: an algorithm

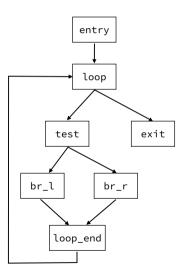
Goal: to decide when to introduce few Φ -nodes



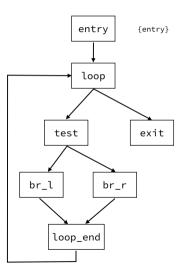


A dominates B if any path from entry to B contains A

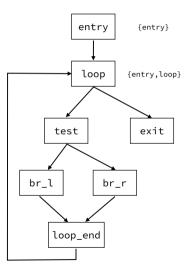
Can you annotate the nodes with their dominators?



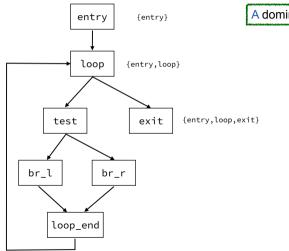
It's reflexive



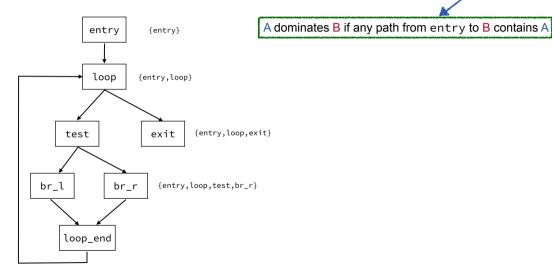
It's reflexive



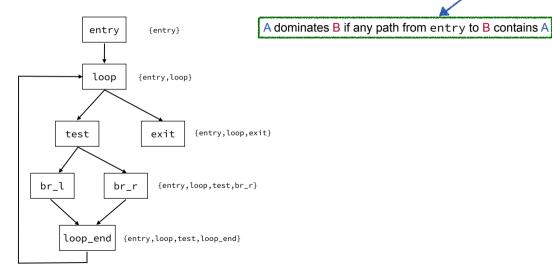
It's reflexive

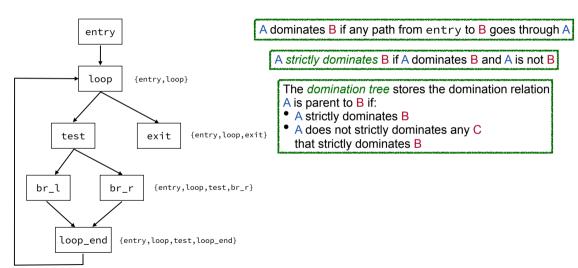


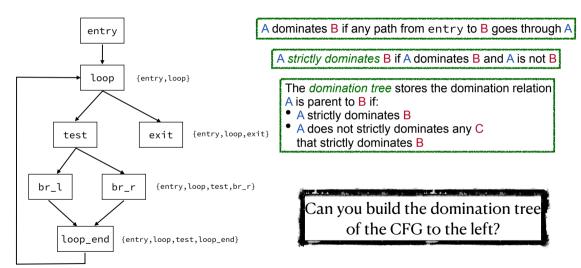
It's reflexive

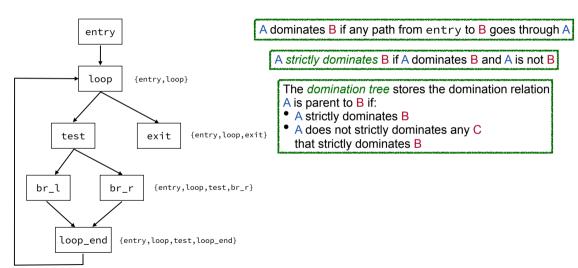


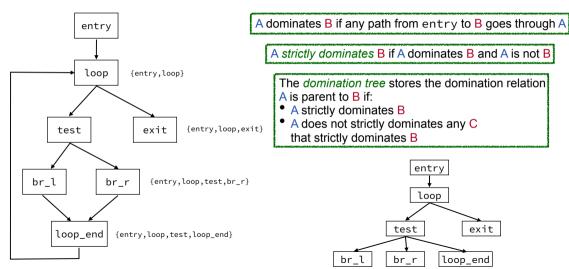
It's reflexive

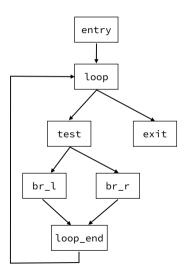




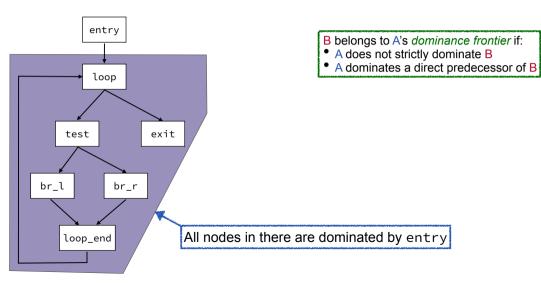


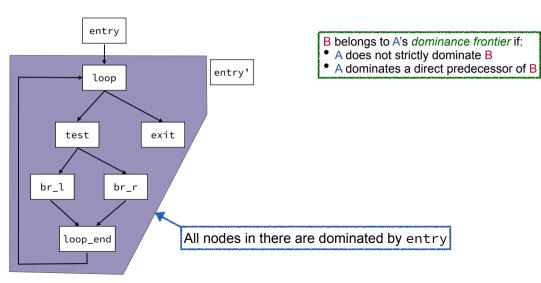


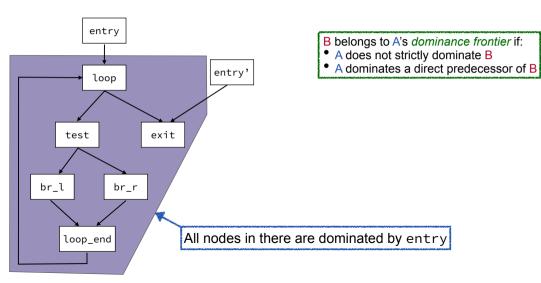


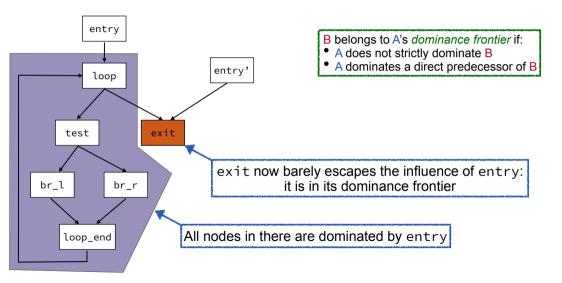


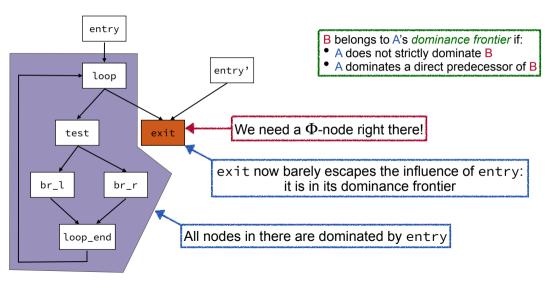
- B belongs to A's dominance frontier if:
- A does not strictly dominate B
- A dominates a direct predecessor of B

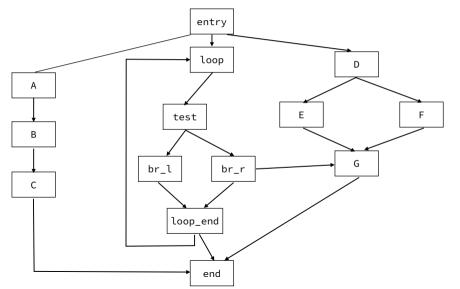


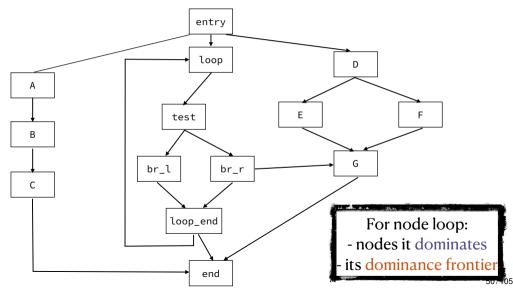


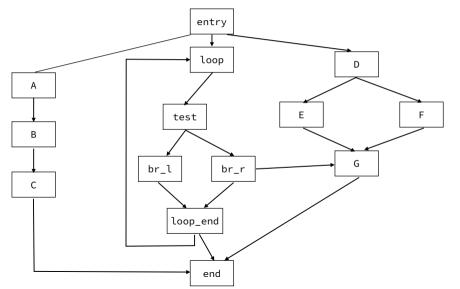




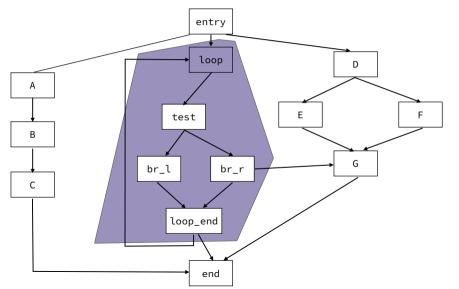




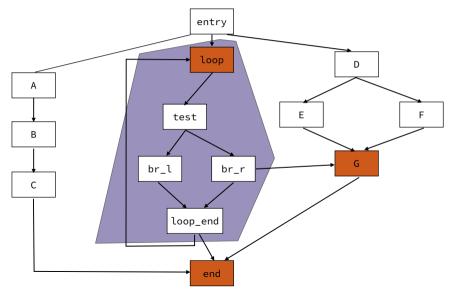


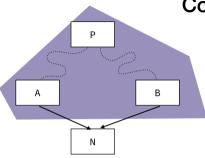


51/105

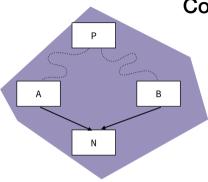


52/105

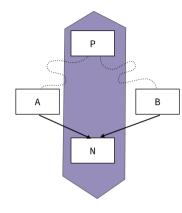




If P dominates A and B, then P dominates N

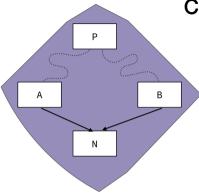


If P dominates A and B, then P dominates N



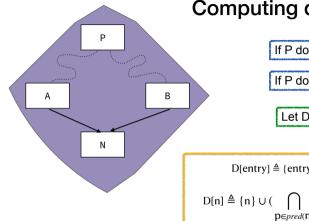
If P dominates A and B, then P dominates N

If P dominates N, then P dominates A and B



If P dominates A and B, then P dominates N

If P dominates N, then P dominates A and B



If P dominates A and B, then P dominates N

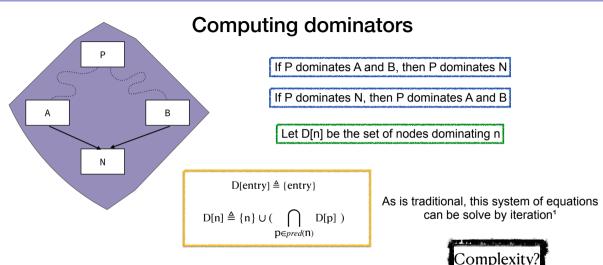
If P dominates N, then P dominates A and B

Let D[n] be the set of nodes dominating n

 $D[entry] \triangleq \{entry\}$

$$D[n] \triangleq \{n\} \cup (\bigcap_{p \in pred(n)} D[p])$$

As is traditional, this system of equations can be solve by iteration¹



¹: For a more efficient algorithm, see Lengauer and Tarjan's 1979

"A fast algorithm for finding dominators in a flowgraph"

G : ambient cfg DT: Dominance Tree of G DF: map from nodes to sets of nodes

computeDF(n) ::=

G : ambient cfg DT: Dominance Tree of G DF: map from nodes to sets of nodes

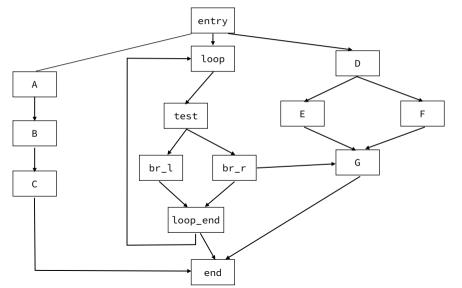
```
computeDF(n) ::=
   S <- {y | y successor of n in G but not in DT}</pre>
```

"Obvious", immediate frontier

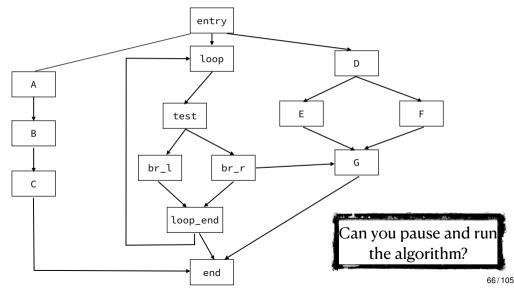
```
G : ambient cfg
DT: Dominance Tree of G
DF: map from nodes to sets of nodes
                                                       "Obvious", immediate frontier
 computeDF(n) ::=
    S \leftarrow \{y \mid y \text{ successor of } n \text{ in } G \text{ but not in } DT\}
    for c in children(n) in DT:
       computeDF(c)
                                                    The rest of the frontier is inherited
       for each w in DF[c]:
                                                         from the other children
          if n does not dominate w:
            S < - S \cup \{w\}
```

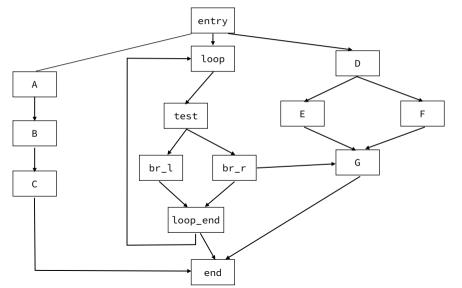
```
G : ambient cfg
DT: Dominance Tree of G
DF: map from nodes to sets of nodes
                                                      "Obvious", immediate frontier
 computeDF(n) ::=
    S \leftarrow \{y \mid y \text{ successor of } n \text{ in } G \text{ but not in } DT\}
    for c in children(n) in DT:
       computeDF(c)
                                                    The rest of the frontier is inherited
       for each w in DF[c]:
                                                         from the other children
         if n does not dominate w:
            S < - S \cup \{w\}
    DF[n] <- S
```

```
G : ambient cfg
DT: Dominance Tree of G
DF: map from nodes to sets of nodes
                                                      "Obvious", immediate frontier
 computeDF(n) ::=
    S \leftarrow \{y \mid y \text{ successor of } n \text{ in } G \text{ but not in } DT\}
    for c in children(n) in DT:
      computeDF(c)
                                                   The rest of the frontier is inherited
      for each w in DF[c]:
                                                        from the other children
         if n does not dominate w:
            S < - S \cup \{w\}
    DF[n] <- S
                                             We kickstart the pass from the entry
   DF ::= computeDF(entry)
```



65/105





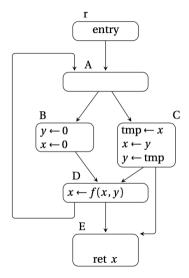
67/105

Taking stock

We want to convert a cfg to SSA-form

- $^{\bullet}$ The key difficulty is to figure out where exactly $\Phi\text{-nodes}$ are needed
- We observed *the dominance frontier* of a node seems to be the right notion
- We saw how to construct the dominance frontier, based on the construction of *the dominance tree*

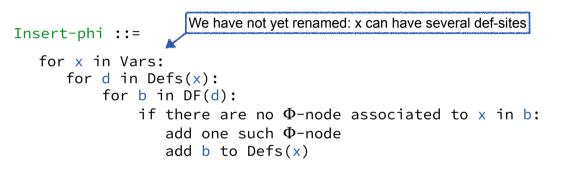
We can now turn to the construction!



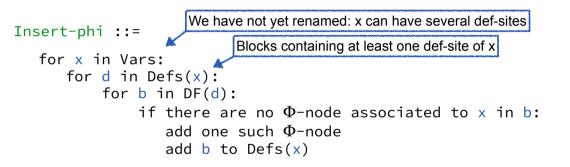
Inserting Φ -nodes

```
Insert-phi ::=
  for x in Vars:
    for d in Defs(x):
        for b in DF(d):
            if there are no Φ-node associated to x in b:
            add one such Φ-node
            add b to Defs(x)
```

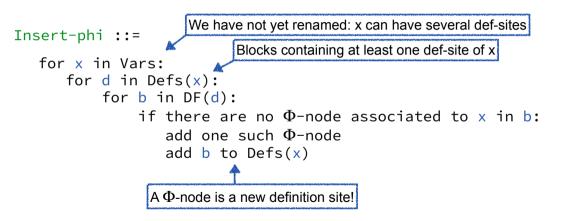
Inserting Φ -nodes



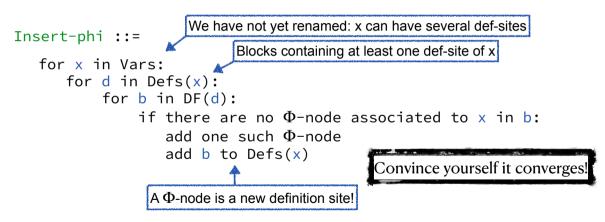
Inserting $\Phi\text{-nodes}$

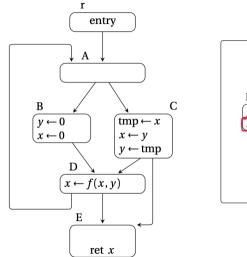


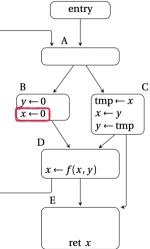
Inserting Φ -nodes



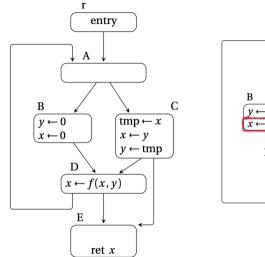
Inserting Φ -nodes

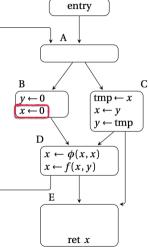






r





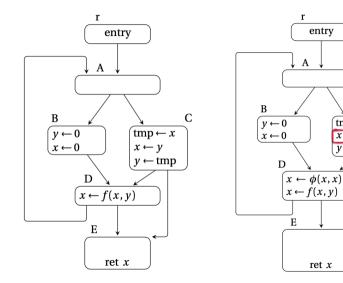
r

С

 $tmp \leftarrow x$

 $y \leftarrow \text{tmp}$

 $x \leftarrow y$

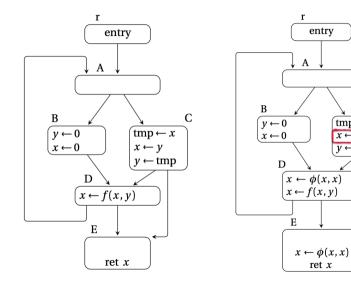


С

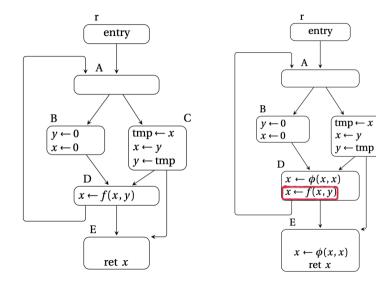
 $tmp \leftarrow x$

 $y \leftarrow \text{tmp}$

 $x \leftarrow y$



С

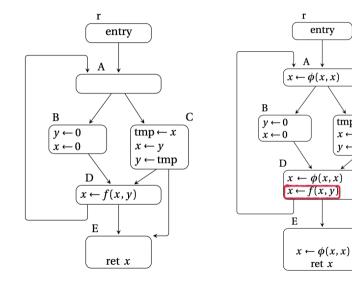


С

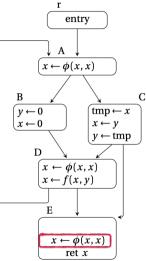
 $tmp \leftarrow x$

 $y \leftarrow \text{tmp}$

 $x \leftarrow y$



r entry А В С $y \leftarrow 0$ $tmp \leftarrow x$ $x \leftarrow 0$ $x \leftarrow y$ $y \leftarrow \text{tmp}$ D $x \leftarrow f(x, y)$ E ret x



entry

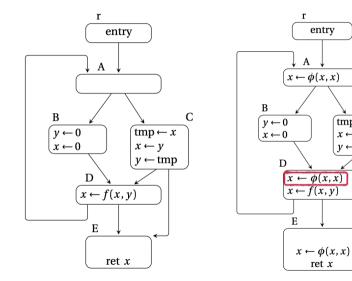
ret x

С

 $tmp \leftarrow x$

 $y \leftarrow \text{tmp}$

 $x \leftarrow y$

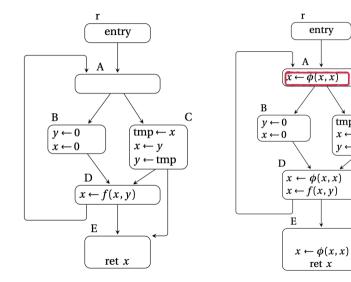


С

 $tmp \leftarrow x$

 $y \leftarrow \text{tmp}$

 $x \leftarrow y$

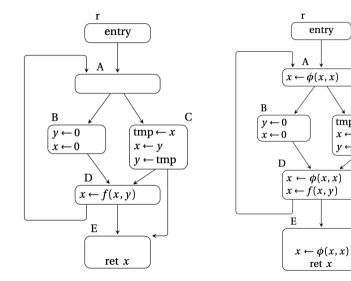


С

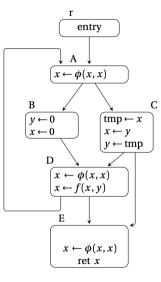
 $tmp \leftarrow x$

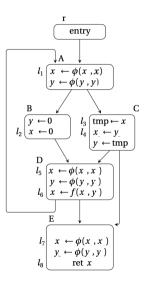
 $y \leftarrow \text{tmp}$

 $x \leftarrow y$



r entry А в С $y \leftarrow 0$ $tmp \leftarrow x$ $x \leftarrow 0$ $x \leftarrow y$ $y \leftarrow \text{tmp}$ D $x \leftarrow f(x, y)$ E ret x





stack[x] : for each variable, we maintain a stack of names ("x_i")
rename_aux(block) ::=

rename() ::= rename_aux(entry)

```
stack[x] : for each variable, we maintain a stack of names ("x_i")
rename_aux(block) ::=
   for ins := y <- e in instr(block):
      for each var x in e, replace x by stack[x]
      generate a fresh name y' for y
      push y' on top of stack[y]</pre>
```

rename() ::= rename_aux(entry)

```
stack[x] : for each variable, we maintain a stack of names ("x_i")
rename_aux(block) ::=
   for ins := y <- e in instr(block):
      for each var x in e, replace x by stack[x]
      generate a fresh name y' for y
      push y' on top of stack[y]
   for each s successor of block:
      for each Φ-node p of s:
         if x is read coming from block, replace x with stack[x]</pre>
```

```
rename() ::= rename_aux(entry)
```

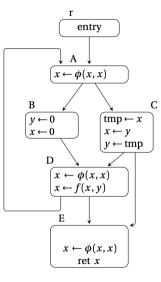
```
stack[x]: for each variable, we maintain a stack of names ("x i")
rename aux(block) ::=
  for ins := v <- e in instr(block):</pre>
    for each var x in e, replace x by stack[x]
    generate a fresh name y' for y
    push v' on top of stack[y]
  for each s successor of block:
    for each \Phi-node p of s:
      if x is read coming from block, replace x with stack[x]
  for each successor b of block in the DT:
    rename aux(b)
```

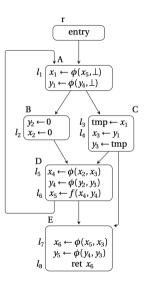
```
rename() ::= rename_aux(entry)
```

```
stack[x] : for each variable, we maintain a stack of names ("x i")
rename aux(block) ::=
  for ins := v <- e in instr(block):</pre>
    for each var x in e, replace x by stack[x]
    generate a fresh name y' for y
    push y' on top of stack[y]
  for each s successor of block:
    for each \Phi-node p of s:
      if x is read coming from block, replace x with stack[x]
  for each successor b of block in the DT:
    rename aux(b)
  pop from stack all variables introduced in this function call
```

```
rename() ::= rename_aux(entry)
```

r entry А в С $y \leftarrow 0$ $tmp \leftarrow x$ $x \leftarrow 0$ $x \leftarrow y$ $y \leftarrow \text{tmp}$ D $x \leftarrow f(x, y)$ E ret x





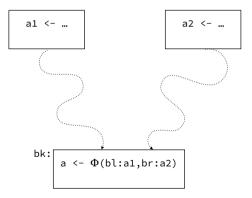
Converting out of SSA form

Processors do not support Φ -nodes, we need to compile them away!

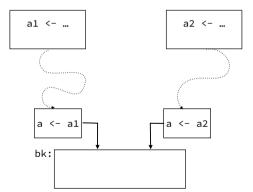
Processors do not support Φ -nodes, we need to compile them away!

bk: a <- Φ(bl:a1,br:a2)

Processors do not support Φ -nodes, we need to compile them away!

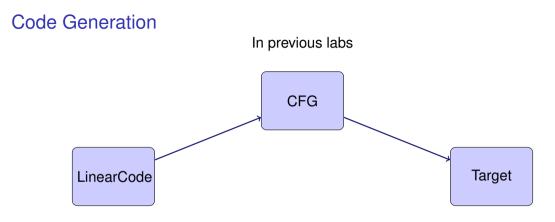


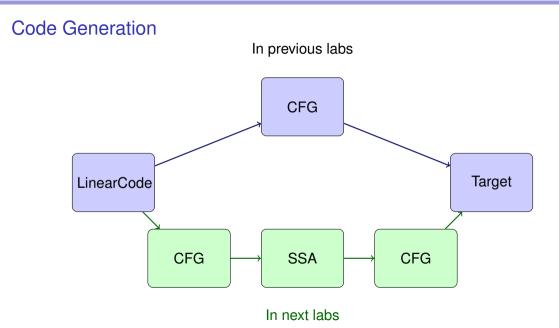
Processors do not support Φ -nodes, we need to compile them away!



A good register allocator should then take care of eliminating needlessly introduced mov

2 LAB: CFG + SSA





Steps

- Implement Leader algorithm (from Linear code to CFG)
- **2** Implement SSA entry (dominance frontier and ϕ -insertion)
- Implement SSA exit

2 LAB: CFG + SSA

To SSA and back again

```
i=1; j=1; k=0;
while (k < 100) {
 if (j < 20) {
   i=i;
   k=k+1:
 } {
   i=k;
   k=k+2:
}}
return j;
```

(Exercise taken from Fernando Pereira)

- Draw the CFG
- Compute the Dominance Tree and the Frontier
- Convert to SSA
- Convert out of SSA

```
To SSA and back again
```

```
i=1; j=1; k=0;
while (k < 100) {
 if (j < 20) {
   j=i;
   k=k+1;
 } {
   j=k;
   k=k+2;
}}
return j;
```

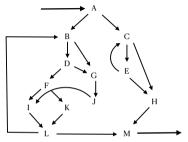
```
To SSA and back again
```

```
i=1; j=1; k=0;
while (k < 100) {
 if (j < 20) {
   j=i;
   k=k+1;
 } {
   j=k;
   k=k+2;
}}
return j;
```

Testing dominance in constant time

We wish to test in constant time whether a given node dominates another. We assume that we have already computed the dominance tree, and allow ourself to this end a little pre-processing.

Q1. Draw the dominance tree of the graph on the right



Q2. Write an instrumented depth-first traversal labeling each node of the dominance tree with two numbers:

- N: the order in which that node was visited
- A: the maximum N among the node's descendants

Q3. Prove that these annotations can be used to test dominance in constant time.

2 LAB: CFG + SSA

