
Lab 3
Interpreters and Types

Objective

• Understand visitors as a way to traverse a tree.
• Implement a typer and an interpreter as visitors.
• This is due on https://etudes.ens-lyon.fr (NO EMAIL PLEASE), before 2024-10-14 23:59. More

instructions in section 3.6.

EXERCISE #1 Ï Lab preparation
In the cap-lab24 directory: git pull will provide you all the necessary files for this lab in TP03 and MiniC.
The latter folder will also be used for the next labs. ANTLR4 and pytest should be installed and working like
in Lab 2, if not 1:
python3 -m pip install pytest pytest-cov pytest-xdist
python3 -m pip install --upgrade coverage

3.1 Demo: Implicit tree walking using Visitors

3.1.1 Interpret (evaluate) arithmetic expressions with visitors

In the previous lab, we used an “attribute grammar” to evaluate arithmetic expressions during parsing. Today,
we are going to let ANTLR build the syntax tree entirely, and then traverse this tree using the Visitor design
pattern2. A visitor is a way to separate algorithms from the data structure they apply to.

For every possible type of node in your AST, a visitor will implement a method that will apply to nodes of
this type.

EXERCISE #2 Ï Demo: arithmetic expression interpreter (TP03/arith-visitor/)
Observe and play with the Arit.g4 grammar and its PYTHON Visitor on myexample :
$ make && make ex
Note that unlike the “attribute grammar” version that we used previously, the .g4 file does not contain Python
code at all.

Have a look at the AritVisitor.py, which is automatically generated by ANTLR4: it provides an abstract
visitor whose methods do nothing except a recursive call on children. Have a look at the MyAritVisitor.py
file, observe how we override the methods to implement the interpreter, and try using print instructions to
observe how the visitor actually works.

Also note the #blabla pragmas after each rules in the g4 file. They are here to provide ANTLR4 a name
for each alternative in grammar rules. These names are used in the visitor classes, as method names that get
called when the associated rule is found (eg. #foo will get visitFoo(ctx) to be called).

We depict the relationship between visitors’ classes in Figure 3.1.

1The second line is not always needed but may solve compatibility issues between versions of pytest-cov and coverage, yielding
pytest-cov: Failed to setup subprocess coverage messages in some situations.

2https://en.wikipedia.org/wiki/Visitor_pattern

Laure Gonnord, Matthieu Moy, Gabriel Radanne et al. 1/10

https://etudes.ens-lyon.fr
https://en.wikipedia.org/wiki/Visitor_pattern


3.1. DEMO: IMPLICIT TREE WALKING USING VISITORS LAB 3. INTERPRETERS AND TYPES

Arit.g4

AritParser.py AritVisitor.py

Tree.py

inherits from

MyAritVisitor.py

antlr -visitor

inherits from

Figure 3.1: Visitor implementation Python/ANTLR4. ANTLR4 generates AritParser as well as AritVisitor. This

AritVisitor inherits from the ParseTree visitor class (defined in Tree.py of the ANTLR4-Python library, use find to

search for it). When visiting a grammar object, a call to visit calls the highest level visit, which itself calls the accept

method of the Parser object of the good type (in AritParser) which finally calls your implementation of MyAritVisitor

that match this particular type (here Multiplication). This process is depicted by the red cycle.

3.1.2 Basic rules to write an ANTLR4 visitor

• For each alternative of each rule labeled #fooBar, write a method visitFooBar(self, ctx) where
ctx is the corresponding parse subtree. Note the case change, #fooBarhas lower-casefbutvisitFooBar
has upper-case F.

• For each element elem in the right-hand side of the rule (lower-case non-terminal or upper-case ter-
minal), you can access its value with ctx.elem(). For non-terminal (lower-case) elements, the corre-
sponding value is a tree. For terminal (upper-case) elements, it is a token of typeantlr4.Token.CommonToken.
Tokens have in particular a field type whose value is AritParser.token-name.

• When the element appears several times, access the n-th instance using ctx.elem(n) (starting with 0).
Note that when there’s only one instance, you cannot use ctx.elem(0) but can only write ctx.elem().

• When the element is named like left=expr in the rule, access it with ctx.left (no parenthesis this
time).

• Both trees and tokens have a getText() method returning the corresponding text in the source code.

• Recursive calls on sub-trees are written as self.visit(subtree).

• what you can write in Python code is dictated by the .g4 file.

Example: when a ANTLR4 rule contains an operator alternative such as:

| expr addop=(PLUS | MINUS) expr #additiveExpr

you can use the following code in your implementation of visitAdditiveExpr to match the operator:

Laure Gonnord, Matthieu Moy, Gabriel Radanne et al. 2/10



3.2. UP TO YOU: FIRST VISITORS LAB 3. INTERPRETERS AND TYPES

def visitAdditiveExpr(self, ctx):
leftval = self.visit(ctx.expr(0))
rightval = self.visit(ctx.expr(1))
if ctx.addop.type == AritParser.PLUS:

return leftval + rightval
else:

return leftval -rightval

Note that we wrote PLUS and MINUS in the same rule to have the same level of precedence, and avoid the
issues we had in lab 2.

3.2 Up to you: first visitors

EXERCISE #3 Ï Trees (should be quickly done!)
Consider the following grammar:

grammar Tree;

int_tree_top : int_tree EOF #top
;

int_tree: INT #leaf
| '(' INT int_tree+ ')' #node
;

INT: [0-9]+;
WS : (' '|'\t'|'\n')+ -> skip;

This grammar represents “scheme-like trees”, for instance node (42 12 1515 17) is the tree with root 42 and
three children 12,1515,17.

1. We give you the grammar in the folder tree/. Copy and adapt previous files to get it operational.

2. Implement a visitor that decides whether a syntactically correct file is a binary tree. Your main file should
contain:

tree = parser.int_tree_top()
visitor = MyTreeVisitor()
is_binary_tree: bool = visitor.visit(tree)
print("Is␣it␣a␣binary␣tree␣?␣" + str(is_binary_tree))

3.2.1 Application to MiniC Language

The objective is now to use visitors, to type and interpret MiniC programs, whose syntax is depicted in Fig-
ure 3.2. Classically, we should do typing first and the interpretation afterwards, but in this lab we will imple-
ment the interpretation first (assuming the program is well-typed).

Laure Gonnord, Matthieu Moy, Gabriel Radanne et al. 3/10



3.2. UP TO YOU: FIRST VISITORS LAB 3. INTERPRETERS AND TYPES

grammar MiniC;

prog: function* EOF #progRule;

// For now, we don't have "real" functions, just the main() function
// that is the main program, with a hardcoded profile and final
// 'return 0' (actually a 'return INT' because we don't have a ZERO
// lexical token).
function: INTTYPE ID OPAR CPAR OBRACE vardecl_l block

RETURN INT SCOL CBRACE #funcDef;

vardecl_l: vardecl* #varDeclList;

vardecl: typee id_l SCOL #varDecl;

id_l: ID #idListBase
| ID COM id_l #idList
;

block: stat* #statList;

stat: assignment SCOL
| if_stat
| while_stat
| print_stat
;

assignment: ID ASSIGN expr #assignStat;

if_stat: IF OPAR expr CPAR then_block=stat_block
(ELSE else_block=stat_block)? #ifStat;

stat_block: OBRACE block CBRACE
| stat
;

while_stat: WHILE OPAR expr CPAR body=stat_block #whileStat;

print_stat
: PRINTLN_INT OPAR expr CPAR SCOL #printlnintStat
| PRINTLN_FLOAT OPAR expr CPAR SCOL #printlnfloatStat
| PRINTLN_BOOL OPAR expr CPAR SCOL #printlnboolStat
| PRINTLN_STRING OPAR expr CPAR SCOL #printlnstringStat
;

Figure 3.2: MiniC syntax. We omitted here the subgrammar for expressions

Laure Gonnord, Matthieu Moy, Gabriel Radanne et al. 4/10



3.3. AN INTERPRETER FOR THE MINIC-LANGUAGE LAB 3. INTERPRETERS AND TYPES

EXERCISE #4 Ï Be prepared!
In the directory MiniC/ (outside TP03/), you will find:

• The MiniC grammar (MiniC.g4). Run make to run ANTLR on it and generate the corresponding Python
files.

• Our “main” program (MiniCC.py) which does the parsing of the input file, then launches the Typing
visitor, and if the file is well typed, launches the Interpreter visitor. In this lab it supports four modes:

– python3 MiniCC.py --mode parse <file> checks whether the given file is syntactically valid
MiniC code.

– python3 MiniCC.py --mode typecheck <file> parses the given file and typechecks it.

– python3 MiniCC.py --mode eval <file>parses, typechecks, and interprets the given program.

– python3 MiniCC.py --mode eval --disable-typecheck <file>parses and interprets the given
program, but does not typecheck it. This will be useful before you complete the typechecker im-
plementation.

Try it on some provided examples (e.g. in TP03/tests/provided/examples-types/), see what hap-
pens for well-typed and ill-typed programs (usually named bad_*.c).

• Two visitors to be completed: TP03/MiniCTypingVisitor.py andTP03/MiniCInterpretVisitor.py.
• Some test cases (TP03/tests), and a test infrastructure.

3.3 An interpreter for the MiniC-language

3.3.1 Informal Specifications of the MiniC Language Semantics

MiniC is a small imperative language inspired from C, with more restrictive typing and semantic rules. Some
constructs have an undefined behavior in C and well defined semantics in MiniC:

• Variables that are not explicitly initialized in the program are automatically initialized:
– to 0 for int,
– to 0.0 for float,
– to false for bool,
– to the empty string "" for string.

• Divisions and modulo by 0 must print the message “Division by 0” and stop program execution with
status 1 (use raise MiniCRuntimeError("Division by 0") to achieve this in the interpreter).

• Conventions for division and modulo are the same as in C: division is truncated toward zero, and modulo
is such that (a/b)∗b +a%b = a.

4/3 = 1 4%3 = 1
(−4)/3 = −1 (−4)%3 = −1
4/(−3) = −1 4%(−3) = 1

(−4)/(−3) = 1 (−4)%(−3) = −1

3.3.2 Implementation of the Interpreter

The semantics of the MiniC language (how to evaluate a given MiniC program) is defined by induction on the
syntax. You already saw how to evaluate a given expression, this is depicted in Figure 3.3.

EXERCISE #5 Ï Interpreter rules (on paper)
First fill the empty cells in Figure 3.4, then ask your teaching assistant to correct them.

EXERCISE #6 Ï Interpreter
Now you have to implement the interpreter of the MiniC language. We give you the structure of the code and
the implementation for numerical expressions and boolean expressions (except modulo!). You can reason
in terms of “well-typed programs”, since badly typed programs should have been rejected earlier.

Run the command:

Laure Gonnord, Matthieu Moy, Gabriel Radanne et al. 5/10



3.3. AN INTERPRETER FOR THE MINIC-LANGUAGE LAB 3. INTERPRETERS AND TYPES

literal constant c
return int(c) or float(c)

variable name x
find value of x in dictionary and return it

e1+e2
v1 <- e1.visit()
v2 <- e2.visit()
return v1+v2

true return true

e1 < e2
return e1.visit()<e2.visit()

Figure 3.3: Interpretation (Evaluation) of expressions

x := e
v <- e.visit()
store(x,v) #update the value in dict

println_int(e)
v <- e.visit()
print(v) # python’s print

S1; S2
s1.visit()
s2.visit()

if b then S1 else S2

while b do S done

Figure 3.4: Interpretation for Statements (pseudo-code)

make
python3 MiniCC.py --mode eval --disable-typecheck TP03/tests/provided/examples/test_print_int.c

Laure Gonnord, Matthieu Moy, Gabriel Radanne et al. 6/10



3.3. AN INTERPRETER FOR THE MINIC-LANGUAGE LAB 3. INTERPRETERS AND TYPES

and the interpreter will be run on test_print_int.c. On the particular example test_print_int.c
observe how integer values are printed.

You still have to implement (in MiniCInterpretVisitor.py):

1. The modulo version of Multiplicative expressions (for the C language semantics of modulo).

2. Variable declarations (varDecl) and variable use (idAtom): your interpreter should use a table (dict in
PYTHON) to store variable definitions and check if variables are correctly defined and initialized. Do
not forget to initialize dict with the initial values (0, 0.0, False or "" depending on the type) for all
variable declarations.

3. Statements: assignments, conditional blocks, tests, loops.

Error codes The exit code of the interpreter should be:
• 1 in case of runtime error (e.g. division by 0, absence of main function)
• 2 in case of typing error
• 3 in case of syntax error
• 4 in case of internal error (i.e. error that should never happen except during debugging)
• 5 in case of unsupported construct (should not be used in lab3, but you will need it for strings and floats

during code generation)
• And obviously, 0 if the program is typechecked and executed without errors.
The fileMiniCC.py in the skeleton already does this for you if you raise the right exception (seeLib/Errors.py).

You need to use these codes as test annotations in programs raising errors:

• Programs raising a runtime error should be annotated with // EXECCODE 1

• Programs rejected by the interpreter before execution should be annotated with // EXITCODE n, with
n being 2, 3, 4 or 5 as documented above.

The distinction between EXECCODE and EXITCODE seems subtle for an interpreter, but will be more obvious
for a compiler, where EXITCODE will refer to the exit code of the compiler, and EXECCODE to the exit code of the
program’s execution.

EXERCISE #7 Ï Automated tests
We provide a script to automatically test your code. As at this point, you do not have your typechecker, modify
the variable DISABLE_TYPECHECK to True in test_interpreter.py. You will have to put it back to False
once you begin working on MiniCTypingVisitor.py.

Test with make test and write an appropriate test-suite. If you get an error about the --cov argument,
you didn’t properly install pytest-cov. You must provide your own tests: they will be graded depending on
their quality. The only outputs are the one from the println_* function or the following error messages: “m
has no value yet!” (or possibly “Undefined variable m”, but this error should never happen if your
typechecker did its job properly) where m is the name of the variable. In case the program has no main func-
tion, the typechecker accepts the program, but it cannot be executed, hence the interpreter raises a “No main
function in file” runtime error. (Note that error messages raised from the typechecker have stricter
formatting requirements, see below.)

Test Infrastructure Tests work mostly as in the previous lab. By default, the testsuite is ran on all .c files in
the TP03/tests/ directory. You may restrict to a set of files using make test FILTER=.... FILTER is either a
single file or an extended wildcard like TP03/tests/provided/**/*.c (** matches any directory hierarchy).

Source files should contain // EXPECTED and // EXITCODE n pragmas to specify the expected behavior
of the compiler. They are special comments (the // is needed to keep compatibility with C, only the testsuite
considers them as special). The EXITCODE corresponds to the exit codes described in Section 3.3.2.

For instance, if you fail test_print_int.c because you printed 43 instead of 42, using the command
make test FILTER=TP03/tests/provided/examples/test_print_int.c
you will get this error:

Laure Gonnord, Matthieu Moy, Gabriel Radanne et al. 7/10



3.4. A TYPE-CHECKER FOR THE MINIC LANGUAGE LAB 3. INTERPRETERS AND TYPES

____________TestInterpret.test_eval[TP03/tests/provided/examples/test_print_int.c] ____________

self = <test_interpreter.TestInterpret object at 0x7f05d6f86a40>,
filename = ’TP03/tests/provided/examples/test_print_int.c’

@pytest.mark.parametrize(’filename’, ALL_FILES)
def test_eval(self, filename):

cat(filename) # For diagnosis
expect = self.get_expect(filename)
eval = self.evaluate(filename)
if expect:

> self.assert_equal(eval, expect)

test_interpreter.py:48:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
self = <test_interpreter.TestInterpret object at 0x7f05d6f86a40>,
actual = testinfo(exitcode=0, execcode=0, output=’43\n’, linkargs=[], skip_test_expected=False)
expected = testinfo(exitcode=0, execcode=0, output=’42\n’, linkargs=[], skip_test_expected=False)

def assert_equal(self, actual, expected):
if expected.output is not None and actual.output is not None:

> assert actual.output == expected.output, \
"Output of the program is incorrect."

E AssertionError: Output of the program is incorrect.
E assert ’43\n’ == ’42\n’
E - 42
E + 43

test_interpreter.py:35: AssertionError

And if you did not print anything at all when 42 was expected, the last lines would be this instead:
def assert_equal(self, actual, expected):

if expected.output is not None and actual.output is not None:
> assert actual.output == expected.output, \

"Output of the program is incorrect."
E AssertionError: Output of the program is incorrect.
E assert ’’ == ’42\n’
E - 42

test_interpreter.py:35: AssertionError

3.4 A type-checker for the MiniC language

3.4.1 Informal Typing Specification for the MiniC Language

MiniC is a subset of C with stricter rules, and predefined aliases:

typedef char * string;
typedef int bool;
static const int true = 1;
static const int false = 0;

The informal typing rules for the MiniC language are:
• Variables must be declared before being used, and can be declared only once ;
• Binary operations (+, -, *, ==, !=, <=, &&, ||, . . . ) require both arguments to be of the same type (e.g.
1 + 2.0 is rejected) ;

• Boolean and integers are incompatible types (e.g. while(1) is rejected) ;
• Binary arithmetic operators return the same type as their operands (e.g. 2. + 3. is a float, 1 / 2 is the

integer division) ;
• Modulo (%) is accepted only on integers, not floats.

Laure Gonnord, Matthieu Moy, Gabriel Radanne et al. 8/10



3.5. LANGUAGE EXTENSIONS LAB 3. INTERPRETERS AND TYPES

• + is accepted on string (it is the concatenation operator), no other arithmetic operator is allowed for
string ;

• Comparison operators (==, <=, . . . ) and logic operators (&&, ||) return a Boolean ;
• == and != accept any type as operands ;
• Other comparison operators (<, >=, . . . ) accept int and float operands only.
The expected errors of the typechecker are the following :

• "In function f: Line l col c: type mismatch for e: t1 and t2" for assignments and comparison (equality
operands only), if the two arguments have different types;

• "In function f: Line l col c: invalid type for MESSAGE: t (and t’)" for typing error, with MESSAGE explicit
enough. For example: “In function main: Line 8 col 6: invalid type for multiplicative operands: integer
and string”;

• "In function f: Line l col c: MESSAGE" for errors that are not purely typing, e.g. undeclared variable or
double declared variables. For example: “In function main: Line 5 col 2: Variable x already declared”.

The name f is the current function, for the moment it should be ’main’ but we may add functions later. Some
of the tests provided, mainly of the form bad_...c, give examples of expected errors.

As before, we explicitly ask you to write new test cases, and make your error messages as explicit as
possible.

3.4.2 Implementation of the Typechecker

EXERCISE #8 Ï Typing
Write typing rules for expressions (on paper). Then, implement a type checker for the MiniC language3 (as a
standalone visitor MiniCTypingVisitor). We provide you with a (basic) class for basic types and the envi-
ronment initialization with the declared types. The methods _raise, _raiseNonType and _assertSameType
allow you to add informative exception handlers. The provided test files must guide you when the implemen-
tation cannot be directly derived from the typing rules. Testing is the same as for the interpreter, except that
you do not have to put --disable-typecheck on your individual test.

Do not forget to modify the variable DISABLE_TYPECHECK back to False in test_interpreter.py, oth-
erwise the command make test will not test your MiniCTypingVisitor.py!

Also, do not forget to intensively use new test files.

3.5 Language extensions

In this section, the instructions are all the same: for each new extension, implement the syntax, give new
semantic rules (on paper), give new interpretation rules (code), new typing rules, relevant test cases, adapt the
test infrastructure, . . . .

The maximum grade (20/20) correspond to a clear and documented code without any flaw, implementing
at least one of the following extensions, and with a test suite of quality.

EXERCISE #9 Ï Fortran-like for loops
Implement typing and interpretation for loops that look like the following example (static loop bounds, op-
tional constant stride):
k=42; for i=k to k+1515 by 2 { .... }
Informal typing and semantics:

• The loop counter must be declared explicitly as int type before the loop ;

• for i = a to b is an empty loop if b is strictly smaller than a (except with negative stride) ;

• Stride can be any integer value. When null, the loop is infinite.

3We do not ask for a decorated AST, only type checking.

Laure Gonnord, Matthieu Moy, Gabriel Radanne et al. 9/10



3.6. FINAL DELIVERY LAB 3. INTERPRETERS AND TYPES

• Assigning the loop index within the loop is allowed, and when this happens the value assigned does not
impact the next loop iterations (like Python’s for i in range(...): loop).

• Loop bounds are evaluated when entering the loop, and not re-evaluated afterwards.

EXERCISE #10 Ï C-like for loops
Extend the language with C-like for loops, with initial assignment, loop condition and increment assignment
all optional. Example are the followings:
for (i=1;i<4;i=i+1) { .... }
for (;j<4.0;j=j+1.5) { .... }

3.6 Final delivery

We recall that your work is personal and code copy (including tests) is strictly forbidden.

EXERCISE #11 Ï Archive
The interpreter and the typer (working together) are due on the course’s webpage

https://etudes.ens-lyon.fr/

Type make tar in the MiniC folder to obtain the archive MYNAME.tgz to send (change your name in the
Makefile before!). You have a (minimal) README-interpreter.md to fill with your name, the functionality
of the code, how to use it, your design choices if any, the chosen extensions, and known bugs. Your archive
must also contain your tests (TESTS!) in the TP03/tests/students folder. We expect unit tests (small files
that test just one feature, or the interaction between a few ones, not everything at once in a huge test file)
with clear and explicit names (typically test_str_assign.c and not test04.c). The command make test
must work with your implementation; if some of the tests you have fail, please report the corresponding
bugs in your readme. When there are some error messages given in examples and tests we provide, you are
expected to write your code to produce exactly these messages.

You will be graded on 20 points, as follows:

• 10 points on the correctness of your code (do you pass all tests we could think of?),

• 5 points on the coverage of your tests (The coverage will be computed using your tests on both your
and our implementations, the maximum grade will be obtained if your tests reach the same coverage
as our reference test suite. Coverage is only considered for the main files of the lab (here: MiniC.g4,
MiniCInterpretVisitor.py and MiniCTypingVisitor.py))
−→ you can check your coverage by going to MiniC/htmlcov/index.html.

• 5 points on the correctness and coverage of the chosen extension (if any), the quality of your code and
tests, your readme, your archive,. . . ,

• if you deposit your work late, you will lose 1 point per hour of lateness,

• in case of plagiarism, if n students have the same code, then the grade of each student will be divided by
n.

Laure Gonnord, Matthieu Moy, Gabriel Radanne et al. 10/10

https://etudes.ens-lyon.fr/

	Interpreters and Types
	Demo: Implicit tree walking using Visitors
	Interpret (evaluate) arithmetic expressions with visitors
	Basic rules to write an ANTLR4 visitor

	Up to you: first visitors
	Application to MiniC Language

	An interpreter for the MiniC-language
	Informal Specifications of the MiniC Language Semantics
	Implementation of the Interpreter

	A type-checker for the MiniC language
	Informal Typing Specification for the MiniC Language
	Implementation of the Typechecker

	Language extensions
	Final delivery


