
Lab 1
Warm-up : the target machine : RISCV

Objective

• Be familiar with the RISCV instruction set.
• Install the RISCV toolchain and simulator.
• Understand how it executes on the RISCV processor with the help of a simulator.
• Write simple programs, assemble, execute.

1.1 The RISCV processor, instruction set, simulator

EXERCISE #1 Ï Lab preparation
Clone the Git repository for this year’s labs:

git clone https://github.com/Drup/cap-lab24.git

If you haven’t done so already, follow the instructions to compile riscv-xxx-gcc and spike on your machine
(see INSTALL.md file).

EXERCISE #2 Ï RISCV C-compiler and simulator, first test
In the directory TP01/riscv/:

• Compile the provided file ex1.cwith:
riscv64-unknown-elf-gcc ex1.c -o ex1.riscv
It produces a RISCV binary named ex1.riscv.

• Execute the binary with the RISCV simulator:
spike pk ex1.riscv
This should print:
bbl loader
42
If you get a runtime exception, try running spike -m100 pk ex1.riscv instead: this limits the RAM
usage of spike to 100 MB (the default is 2 GB).

• The corresponding RISCV code can be obtained in a more readable format by:
riscv64-unknown-elf-gcc ex1.c -S -o ex1.s -fverbose-asm
(have a look at the generated .s file!)

The objective of this sequence of labs is to design our own (subset of) C compiler for RISCV.

EXERCISE #3 Ï Documents
Some documentation can be found in the RISCV ISA on the course webpage and in Appendix A.

https://compil-lyon.gitlabpages.inria.fr/

In the architecture course, you already saw a version of the target machine RISCV. The instruction set is
depicted in Appendix A.

1.1.1 Hand exercises

EXERCISE #4 Ï TD
On paper, write (in RISCV assembly language) a program which initializes the t0 register to 1 and increments
it until it becomes equal to 8.

EXERCISE #5 Ï TD : sum
Write a program in RISCV assembly that computes the sum of the 10 first positive integers (excluded 10).

Laure Gonnord, Matthieu Moy, Gabriel Radanne et al. 1/11

https://compil-lyon.gitlabpages.inria.fr/

1.2. RISCV SIMULATOR LAB 1. WARM-UP : THE TARGET MACHINE : RISCV

1.1.2 Assembling, disassembling

EXERCISE #6 Ï Hand assembling, simulation of the hex code
Assemble by hand (on paper) the instructions:

1 .globl main
2 main:
3 addi a0, a0, 1
4 bne a0, a0, main
5 end:
6 ret

You will need the set of instructions of the RISCV machine and their associated opcode. All the info is in
the ISA documentation.

To check your solution (after you did the job manually), you can redo the assembly using the toolchain:

riscv64-unknown-elf-as -march=rv64g asshand.s -o asshand.o

asshand.o is an ELF file which contains both the compiled code and some metadata (you can try hexdump
asshand.o to view its content, but it’s rather large and unreadable). The tool objdump allows extracting the
code section from the executable, and show the binary code next to its disassembled version:

riscv64-unknown-elf-objdump -d asshand.o

Check that the output is consistent with what you found manually.

EXERCISE #7 Ï Hand disassembling
Guess a RISCV program that assembles itself into :

Listing 1.1: disass.lst

disass.o: format de fichier elf64-littleriscv

Déassemblage de la section .text:

0000000000000000 <main>:
0: 00128313 xx
4: ffdff06f yy
8: 00008067 zz

1.2 RISCV Simulator

EXERCISE #8 Ï Execution and debugging
See https://www.lowrisc.org/docs/tagged-memory-v0.1/spike/ for details on the Spike simulator.
test_print.s is a small but complete example using Risc-V assembly. It uses the println_string,

print_int, print_char and newline functions provided to you in libprint.s. Each function can be called
with call print_... and prints the content of register a0 (call newline takes no input and prints a new-
line character).

1. First test assembling and simulation on the file test_print.s:
riscv64-unknown-elf-as -march=rv64g test_print.s -o test_print.o

2. Optionally, run riscv64-unknown-elf-objdump -D as in previous exercise. The -D option shows all
sections, including .rodata.

3. The libprint.s library must be assembled too:
riscv64-unknown-elf-as -march=rv64g libprint.s -o libprint.o

4. We now link these files together to get an executable:

Laure Gonnord, Matthieu Moy, Gabriel Radanne et al. 2/11

https://www.lowrisc.org/docs/tagged-memory-v0.1/spike/

1.2. RISCV SIMULATOR LAB 1. WARM-UP : THE TARGET MACHINE : RISCV

riscv64-unknown-elf-gcc test_print.o libprint.o -o test_print
The generated test_print file should be executable, but since it uses the Risc-V ISA, we can’t execute it
natively (try ./test_print, you’ll get an error like Exec format error).

5. Run the simulator:
spike pk ./test_print
The output should look like:
bbl loader
HI MIF08!
42
a
The first line comes from the simulator itself, the next two come from the println_string, print_int
and print_char calls in the assembly code.

6. We can also view the instructions while they are executed:
spike -l pk ./test_print
Unfortunately, this shows all the instructions in pk (Proxy Kernel, a kind of mini operating system), and
is mostly unusable. Alternatively, we can run a step-by-step simulation starting from a given symbol. To
run the instructions in main, we first get the address of main in the executable:
$ riscv64-unknown-elf-nm test_print | grep main
000000000001014c T main
This means: main is a symbol defined in the .text section (T in the middle column), it is global (capital
T), and its address is 1014c (you may not have the same address). Now, run spike in debug mode (-d) and
execute code up to this address (until pc 0 1014c, i.e. “Until the program counter of core 0 reaches
1014c”). Press Return to move to the next instruction and q to quit:
$ spike -d pk ./test_print
: until pc 0 1014c
bbl loader
:
core 0: 0x000000000001014c (0xff010113) addi sp, sp, -16
:
core 0: 0x0000000000010150 (0x00113423) sd ra, 8(sp)
:
core 0: 0x0000000000010154 (0x0000e517) auipc a0, 0xe
:
core 0: 0x0000000000010158 (0x41450513) addi a0, a0, 1044
: q
$

Remark: For your labs, you may want to assemble and link with a single command (which can also do the
compilation if you provide .c files on the command-line):

riscv64-unknown-elf-gcc -march=rv64g libprint.s test_print.s -o main

In real-life, people run compilation+assembly and link as two different commands, but use a build system like
a Makefile to re-run only the right commands.

EXERCISE #9 Ï Algo in RISCV assembly
Write (in minmax.s) a program in RISCV assembly that computes the min of two integers, and stores the result
in a precise location of the memory that has the label min. Try with different values. We use 64 bits of memory
to store ints, i.e. use .dword directive and ld and sd pseudo-instructions (resp. load and store 64-bit ints at a
specified register).

EXERCISE #10 Ï (Advanced) Algo in RISCV assembly

Write and execute the following programs in assembly:
• Count the number of non-nul bits of a given integer, print the result (in bitcount.s).
• Draw squares and triangles of stars (character ’*’) of size n, n being stored somewhere in memory (resp.

in carres.s, triangles.s).

Laure Gonnord, Matthieu Moy, Gabriel Radanne et al. 3/11

1.3. FINISHED? LAB 1. WARM-UP : THE TARGET MACHINE : RISCV

Examples:
n=3 square:

n=3 triangle:
*
* *
* * *
The function print_char expects the ASCII encoding of the character you want to print.

1.3 Finished?

If you’re done with the lab, do the python tutorial at the following address:

https://docs.python.org/fr/3.10/tutorial/

Laure Gonnord, Matthieu Moy, Gabriel Radanne et al. 4/11

https://docs.python.org/fr/3.10/tutorial/

Appendix A
RISCV Assembly Documentation (ISA), rv64g

About

• RISCV is an open instruction set initially developed by Berkeley University, used among others by West-
ern Digital, Alibaba and Nvidia.

• We are using the rv64g instruction set: Risc-V, 64 bits, General purpose (base instruction set, and exten-
sions for floating point, atomic and multiplications), without compressed instructions. In practice, we
will use only 32 bits instructions (and very few of floating point instructions).

• Document: Laure Gonnord and Matthieu Moy, for CAP and MIF08.

This is a simplified version of the machine, which is (hopefully) conform to the chosen simulator.

A.1 Installing the simulator and getting started

To get the RISCV assembler and simulator, follow instructions of the first lab (git pull on the course lab repos-
itory).

A.2 The RISCV architecture

Here is an example of RISCV assembly code snippet (a proper main function would be needed to execute it,
cf. course and lab):

1 addi a0, zero, 17 # initialisation of a register to 17
2 loop:
3 addi a0, a0, -1 # subtraction of an immediate
4 j loop # equivalent to jump xx

The rest of the documentation is adapted fromhttps://github.com/riscv/riscv-asm-manual/blob/
master/riscv-asm.md and https://github.com/jameslzhu/riscv-card/blob/master/riscv-card.
pdf

A.3 (Incomplete) RISC-V Assembly Programmer’s Manual

A.3.1 Copyright and License Information - Documents

The RISC-V Assembly Programmer’s Manual is
© 2017 Palmer Dabbelt palmer@dabbelt.com © 2017 Michael Clark michaeljclark@mac.com © 2017

Alex Bradbury asb@lowrisc.org
It is licensed under the Creative Commons Attribution 4.0 International License (CC-BY 4.0). The full li-

cense text is available at https://creativecommons.org/licenses/by/4.0/.

• Official Specifications webpage: https://riscv.org/specifications/

• Latest Specifications draft repository: https://github.com/riscv/riscv-isa-manual

This document has been modified by Laure Gonnord & Matthieu Moy, in 2019 for teaching purpose (MIF08
and CAP).

Laure Gonnord, Matthieu Moy, Gabriel Radanne et al. 5/11

https://github.com/riscv/riscv-asm-manual/blob/master/riscv-asm.md
https://github.com/riscv/riscv-asm-manual/blob/master/riscv-asm.md
https://github.com/jameslzhu/riscv-card/blob/master/riscv-card.pdf
https://github.com/jameslzhu/riscv-card/blob/master/riscv-card.pdf
mailto:palmer@dabbelt.com
mailto:michaeljclark@mac.com
mailto:asb@lowrisc.org

A.3. (INCOMPLETE) RISC-V ASSEMBLY PROGRAMMER’S MANUAL APPENDIX A. RISCV ISA

A.3.2 Registers

Registers are the most important part of any processor. RISC-V defines various types, depending on which
extensions are included: The general registers (with the program counter), control registers, floating point
registers (F extension), and vector registers (V extension). We won’t use control nor F or V registers.

General registers

The RV32I base integer ISA includes 32 registers, named x0 to x31. The program counter PC is separate from
these registers, in contrast to other processors such as the ARM-32. The first register, x0, has a special function:
Reading it always returns 0 and writes to it are ignored.

In practice, the programmer doesn’t use this notation for the registers. Though x1 to x31 are all equally
general-use registers as far as the processor is concerned, by convention certain registers are used for special
tasks. In assembler, they are given standardized names as part of the RISC-V application binary interface
(ABI). This is what you will usually see in code listings. If you really want to see the numeric register names,
the -M argument to objdump will provide them.

Register ABI Use by convention Preserved?

x0 zero hardwired to 0, ignores writes n/a
x1 ra return address for jumps no
x2 sp stack pointer yes
x3 gp global pointer n/a
x4 tp thread pointer n/a
x5-x7 t0-t2 temporary register 0 through 2 no
x8 s0 or fp saved register 0 or frame pointer yes
x9 s1 saved register 1 yes
x10 a0 return value or function argument 0 no
x11 a1 return value or function argument 1 no
x12-x17 a2-a7 function argument 2 through 7 no
x18-x27 s2-s11 saved register 2 through 11 yes
x28-x31 t3-t6 temporary register 3 through 6 no
pc (none) program counter n/a

Registers of the RV32I. Based on RISC-V documentation and Patterson and Waterman “The RISC-V Reader”
(2017)

As a general rule, the saved registers s0 to s11 are preserved across function calls, while the argument
registers a0 to a7 and the temporary registers t0 to t6 are not. The use of the various specialized registers
such as sp by convention will be discussed later in more detail.

A.3.3 Instructions

Arithmetic

add, addi (add immediate), sub, classically.

addi a0, zero, 42

initialises a0 to 0+42 = 42.

Labels

Text labels are used as branch, unconditional jump targets and symbol offsets. Text labels are added to the
symbol table of the compiled module.

loop:
j loop

Jumps and branches target is encoded with a relative offset in bytes. It is relative to the beginning of the
current instruction. For example, the self-loop above corresponds to an offset of 0 bytes.

Laure Gonnord, Matthieu Moy, Gabriel Radanne et al. 6/11

A.3. (INCOMPLETE) RISC-V ASSEMBLY PROGRAMMER’S MANUAL APPENDIX A. RISCV ISA

Branching

Test and jump, within the same instruction:

beq a0, a1, end

tests whether the values stored in a0 and a1 are equal, and jumps to ‘end’ if so.

Load Immediate

The following example shows the li pseudo instruction which is used to load immediate values:

li a0, 0x76543210

which generates the following assembler output as seen by objdump (generated code will be different de-
pending on the constant):

0: 76543537 lui a0,0x76543
4: 2105051b addiw a0,a0,528

Load Address

The following example shows the la pseudo instruction which is used to load symbol addresses:

.section .text

.globl _start
_start:

la a0, msg

.section .rodata
msg:

.string "Hello World\n"

loads in a0 the address of label ‘msg’.

Load from memory

The instruction lb (resp. lh, lw, ld) loads an 8-bit (resp. 16, 32, 64-bit) value into memory. To load in t1 the
second dword at label ‘dat’, one would write:

.text

.globl main
main:

la t0, dat # load address of dat
ld t1, 8(t0) # load dword at 8-byte offset after address dat

.section .data
dat:

.dword 42

.dword 33 # <- this one

Absolute addressing

The following example shows how to load an absolute address:

Laure Gonnord, Matthieu Moy, Gabriel Radanne et al. 7/11

A.3. (INCOMPLETE) RISC-V ASSEMBLY PROGRAMMER’S MANUAL APPENDIX A. RISCV ISA

.section .text

.globl _start
_start:

lui a0, %hi(msg) # load msg(hi)
addi a0, a0, %lo(msg) # load msg(lo)
jal ra, puts

2: j 2b

.section .rodata
msg:

.string "Hello World\n"

lui a0, %hi(msg) first loads in a0 the 20 upper bits of the address at label ‘msg’, then we add the 12 lower
bits with addi aO, aO, %lo(msg).

The following assembler output and relocations are generated:

0000000000000000 <_start>:
0: 000005b7 lui a1,0x0

0: R_RISCV_HI20 msg
4: 00858593 addi a1,a1,8 # 8 <.L21>

4: R_RISCV_LO12_I msg

Relative addressing

The following example shows how to load a PC-relative address:

.section .text

.globl _start
_start:
1: auipc a0, %pcrel_hi(msg) # load msg(hi)

addi a0, a0, %pcrel_lo(1b) # load msg(lo)
jal ra, puts

2: j 2b

.section .rodata
msg:

.string "Hello World\n"

auipc (add upper immediate to pc) adds its second operand (an immediate value, here the 20 upper bits
of the address ‘msg’) to the current value of the pc, and loads the result in its first operand.

The following assembler output and relocations are generated:

0000000000000000 <_start>:
0: 00000597 auipc a1,0x0

0: R_RISCV_PCREL_HI20 msg
4: 00858593 addi a1,a1,8 # 8 <.L21>

4: R_RISCV_PCREL_LO12_I .L11

A.3.4 Assembler directives for CAP and MIF08

Both the RISC-V-specific and GNU .-prefixed options.
The following table lists assembler directives:

Directive Arguments Description

.align integer align to power of 2 (alias for .p2align)

Laure Gonnord, Matthieu Moy, Gabriel Radanne et al. 8/11

A.3. (INCOMPLETE) RISC-V ASSEMBLY PROGRAMMER’S MANUAL APPENDIX A. RISCV ISA

Directive Arguments Description

.file “filename” emit filename FILE LOCAL symbol
table

.globl symbol_name emit symbol_name to symbol table
(scope GLOBAL)

.local symbol_name emit symbol_name to symbol table
(scope LOCAL)

.section [{.text,.data,.rodata,.bss}] emit section (if not present, default
.text) and make current

.size symbol, symbol accepted for source compatibility

.text emit .text section (if not present) and
make current

.data emit .data section (if not present) and
make current

.rodata emit .rodata section (if not present)
and make current

.string “string” emit string

.equ name, value constant definition

.word expression [, expression]* 32-bit comma separated words

.balign b,[pad_val=0] byte align

.zero integer zero bytes

A.3.5 Assembler Relocation Functions

The following table lists assembler relocation expansions:

Assembler Notation Description Instruction / Macro

%hi(symbol) Absolute (HI20) lui
%lo(symbol) Absolute (LO12) load, store, add
%pcrel_hi(symbol) PC-relative (HI20) auipc
%pcrel_lo(label) PC-relative (LO12) load, store, add

A.3.6 Instruction encoding

Credit This is a subset of the RISC-V greencard, by James Izhu, licence CC by SA, https://github.com/
jameslzhu/riscv-card

Core Instruction Formats

31 27 26 25 24 20 19 15 14 12 11 7 6 0

funct7 rs2 rs1 funct3 rd opcode R-type
imm[11:0] rs1 funct3 rd opcode I-type

imm[11:5] rs2 rs1 funct3 imm[4:0] opcode S-type
imm[12|10:5] rs2 rs1 funct3 imm[4:1|11] opcode B-type

imm[31:12] rd opcode U-type
imm[20|10:1|11|19:12] rd opcode J-type

“imm[x:y]” means “bits x to y from binary representation of imm”. “imm[y|x]” means “bits y, then x of imm”. Negative
immediate values are stored using two’s complement (e.g. -1 is 1111. . . 1).

Laure Gonnord, Matthieu Moy, Gabriel Radanne et al. 9/11

https://github.com/jameslzhu/riscv-card
https://github.com/jameslzhu/riscv-card

A.3. (INCOMPLETE) RISC-V ASSEMBLY PROGRAMMER’S MANUAL APPENDIX A. RISCV ISA

RV32I Base Integer Instructions - CAP subset

Inst Name Format Opcode funct3 funct7 Description (C) Note
add ADD R 0110011 0x0 0x00 rd = rs1 + rs2
sub SUB R 0110011 0x0 0x20 rd = rs1 - rs2
xor XOR R 0110011 0x4 0x00 rd = rs1 ˆ rs2
or OR R 0110011 0x6 0x00 rd = rs1 | rs2
and AND R 0110011 0x7 0x00 rd = rs1 & rs2
slt Set Less Than R 0110011 0x2 0x00 rd = (rs1 < rs2)?1:0
sltu Set Less Than (U) R 0110011 0x3 0x00 rd = (rs1 < rs2)?1:0 zero-extends
addi ADD Immediate I 0010011 0x0 rd = rs1 + imm
xori XOR Immediate I 0010011 0x4 rd = rs1 ˆ imm
ori OR Immediate I 0010011 0x6 rd = rs1 | imm
andi AND Immediate I 0010011 0x7 rd = rs1 & imm
lb Load Byte I 0000011 0x0 rd = M[rs1+imm][0:7]
lw Load Word I 0000011 0x2 rd = M[rs1+imm][0:31]
lbu Load Byte (U) I 0000011 0x4 rd = M[rs1+imm][0:7] zero-extends
sb Store Byte S 0100011 0x0 M[rs1+imm][0:7] = rs2[0:7]
sw Store Word S 0100011 0x2 M[rs1+imm][0:31] = rs2[0:31]

beq Branch == B 1100011 0x0 if(rs1 == rs2) PC += imm
bne Branch != B 1100011 0x1 if(rs1 != rs2) PC += imm
blt Branch < B 1100011 0x4 if(rs1 < rs2) PC += imm
bge Branch ≥ B 1100011 0x5 if(rs1 >= rs2) PC += imm
bltu Branch < (U) B 1100011 0x6 if(rs1 < rs2) PC += imm zero-extends
bgeu Branch ≥ (U) B 1100011 0x7 if(rs1 >= rs2) PC += imm zero-extends
jal Jump And Link J 1101111 rd = PC+4; PC += imm
jalr Jump And Link Reg I 1100111 0x0 rd = PC+4; PC = rs1 + imm

lui Load Upper Imm U 0110111 rd = imm << 12
auipc Add Upper Imm to PC U 0010111 rd = PC + (imm << 12)

Laure Gonnord, Matthieu Moy, Gabriel Radanne et al. 10/11

A.3. (INCOMPLETE) RISC-V ASSEMBLY PROGRAMMER’S MANUAL APPENDIX A. RISCV ISA

Pseudo Instructions

Pseudoinstruction Base Instruction(s) Meaning

la rd, symbol
auipc rd, symbol[31:12]

Load address
addi rd, rd, symbol[11:0]

{lb|lh|lw|ld} rd, symbol
auipc rd, symbol[31:12]

Load global
{lb|lh|lw|ld} rd, symbol[11:0](rd)

{sb|sh|sw|sd} rd, symbol, rt
auipc rt, symbol[31:12]

Store global
s{b|h|w|d} rd, symbol[11:0](rt)

{flw|fld} rd, symbol, rt
auipc rt, symbol[31:12]

Floating-point load global
fl{w|d} rd, symbol[11:0](rt)

{fsw|fsd} rd, symbol, rt
auipc rt, symbol[31:12]

Floating-point store global
fs{w|d} rd, symbol[11:0](rt)

nop addi x0, x0, 0 No operation
li rd, immediate Myriad sequences Load immediate
mv rd, rs addi rd, rs, 0 Copy register
not rd, rs xori rd, rs, -1 One’s complement
neg rd, rs sub rd, x0, rs Two’s complement
negw rd, rs subw rd, x0, rs Two’s complement word
sext.w rd, rs addiw rd, rs, 0 Sign extend word
seqz rd, rs sltiu rd, rs, 1 Set if = zero
snez rd, rs sltu rd, x0, rs Set if ̸= zero
sltz rd, rs slt rd, rs, x0 Set if < zero
sgtz rd, rs slt rd, x0, rs Set if > zero
fmv.s rd, rs fsgnj.s rd, rs, rs Copy single-precision register
fabs.s rd, rs fsgnjx.s rd, rs, rs Single-precision absolute value
fneg.s rd, rs fsgnjn.s rd, rs, rs Single-precision negate
fmv.d rd, rs fsgnj.d rd, rs, rs Copy double-precision register
fabs.d rd, rs fsgnjx.d rd, rs, rs Double-precision absolute value
fneg.d rd, rs fsgnjn.d rd, rs, rs Double-precision negate
beqz rs, offset beq rs, x0, offset Branch if = zero
bnez rs, offset bne rs, x0, offset Branch if ̸= zero
blez rs, offset bge x0, rs, offset Branch if ≤ zero
bgez rs, offset bge rs, x0, offset Branch if ≥ zero
bltz rs, offset blt rs, x0, offset Branch if < zero
bgtz rs, offset blt x0, rs, offset Branch if > zero
bgt rs, rt, offset blt rt, rs, offset Branch if >
ble rs, rt, offset bge rt, rs, offset Branch if ≤
bgtu rs, rt, offset bltu rt, rs, offset Branch if >, unsigned
bleu rs, rt, offset bgeu rt, rs, offset Branch if ≤, unsigned
j offset jal x0, offset Jump
jal offset jal x1, offset Jump and link
jr rs jalr x0, rs, 0 Jump register
jalr rs jalr x1, rs, 0 Jump and link register
ret jalr x0, x1, 0 Return from subroutine

call offset
auipc x1, offset[31:12]

Call far-away subroutine
jalr x1, x1, offset[11:0]

tail offset
auipc x6, offset[31:12]

Tail call far-away subroutine
jalr x0, x6, offset[11:0]

fence fence iorw, iorw Fence on all memory and I/O

RV32M Multiply Extension (basic instructions)

Inst Name FMT Opcode funct3 funct7 Description (C)
mul MUL R 0110011 0x0 0x01 rd = (rs1 * rs2)[31:0]
div DIV R 0110011 0x4 0x01 rd = rs1 / rs2
rem Remainder R 0110011 0x6 0x01 rd = rs1 % rs2

Laure Gonnord, Matthieu Moy, Gabriel Radanne et al. 11/11

	Warm-up : the target machine : RISCV
	The RISCV processor, instruction set, simulator
	Hand exercises
	Assembling, disassembling

	RISCV Simulator
	Finished?

	RiscV ISA
	Installing the simulator and getting started
	The RISCV architecture
	(Incomplete) RISC-V Assembly Programmer's Manual
	Copyright and License Information - Documents
	Registers
	Instructions
	Assembler directives for CAP and MIF08
	Assembler Relocation Functions
	Instruction encoding

