
Compilation (#6b) : SSA for Fun and Optimisations

Gabriel Radanne

Master 1, ENS de Lyon et Dpt Info, Lyon1

2024-2025



Our compiler so far

Parsing and Typing

Use of clever™ intermediate representations: CFG and SSA

Register allocation and code emission

Today, we optimize!

Gabriel Radanne (M1 - Lyon1 & ENSL) Compilation (#6b) (CAP): SSA for Fun and Optimisations 2024-2025 ↞ 2 / 32 ↠



Optimisations in SSA

1 Optimisations in SSA
Sparse analysis
Control dependencies
A glimpse at loop optimisations

Gabriel Radanne (M1 - Lyon1 & ENSL) Compilation (#6b) (CAP): SSA for Fun and Optimisations 2024-2025 ↞ 3 / 32 ↠



Optimisations in SSA

Redundancy – Source of Optimization

Why are there redundancy in programs?

Programmer’s convenience:

foo(x,y,z) = x * y + z

...

c = foo(a,1,b); // a + b

d = a + b

Higher level constructs:

x = a[i]; // x = *(a + i * 4)

...

a[i] = y // *(a + i * 4) = y

Gabriel Radanne (M1 - Lyon1 & ENSL) Compilation (#6b) (CAP): SSA for Fun and Optimisations 2024-2025 ↞ 4 / 32 ↠



Optimisations in SSA

Simple dead code elimination

Dead code elimination: remove code that is never executed

a = 4; b = 10;

...

c = 2:

7→ ...

c = 2:

Property
A variable is live at its definition if and only if its list of uses is not empty.

True in SSA because each variable has a single definition!
▶ A variable is dead if it has no uses.

Gabriel Radanne (M1 - Lyon1 & ENSL) Compilation (#6b) (CAP): SSA for Fun and Optimisations 2024-2025 ↞ 5 / 32 ↠



Optimisations in SSA

Simple dead code elimination

while there is some variable v with no uses

and the statement S that defines v has no other side effects

do:

delete S

What happens when we delete an instruction?

How to implement this?

▶ Maintain a worklist containing the variables to look at. Loop until it’s empty.

Gabriel Radanne (M1 - Lyon1 & ENSL) Compilation (#6b) (CAP): SSA for Fun and Optimisations 2024-2025 ↞ 6 / 32 ↠



Optimisations in SSA

Simple dead code elimination

while there is some variable v with no uses

and the statement S that defines v has no other side effects

do:

delete S

What happens when we delete an instruction?

How to implement this?
▶ Maintain a worklist containing the variables to look at. Loop until it’s empty.

Gabriel Radanne (M1 - Lyon1 & ENSL) Compilation (#6b) (CAP): SSA for Fun and Optimisations 2024-2025 ↞ 6 / 32 ↠



Optimisations in SSA

A running example

Program example CFG
SSA

Gabriel Radanne (M1 - Lyon1 & ENSL) Compilation (#6b) (CAP): SSA for Fun and Optimisations 2024-2025 ↞ 7 / 32 ↠



Optimisations in SSA

Simple constant propagation

We can propagate constants of single definitions:

1 if v ← c, we can replace any use of v by c

2 if v ← ϕ(c, c, c), we can replace it by v ← c

▶ Again, using a worklist algorithm

Gabriel Radanne (M1 - Lyon1 & ENSL) Compilation (#6b) (CAP): SSA for Fun and Optimisations 2024-2025 ↞ 8 / 32 ↠



Optimisations in SSA

The worklist algorithm

W = list of all statements in the SSA program

while W ̸= ∅:
pop statement S ∈W

if S is v ← ϕ(c, . . . , c):

replace S by v ← c

if S is v ← c:

delete S from the program

for each statement T using v:

substitute v by c in T

W = W ∪ {T}

Gabriel Radanne (M1 - Lyon1 & ENSL) Compilation (#6b) (CAP): SSA for Fun and Optimisations 2024-2025 ↞ 9 / 32 ↠



Optimisations in SSA

Application of the worklist algorithm

This algorithm can be extended to also apply the following optimisations:

Copy propagation: For each copy x← y, replace x by y

Constant folding: For each operation x← c0 + c1, replaces c0 + c1 by its
result

Constant conditions: If the result of a jump is known, replace it by an
absolute jump

Unreachable code: If a block can’t be accessed, remove it

. . .

Gabriel Radanne (M1 - Lyon1 & ENSL) Compilation (#6b) (CAP): SSA for Fun and Optimisations 2024-2025 ↞ 10 / 32 ↠



Optimisations in SSA Sparse analysis

1 Optimisations in SSA
Sparse analysis
Control dependencies
A glimpse at loop optimisations

Gabriel Radanne (M1 - Lyon1 & ENSL) Compilation (#6b) (CAP): SSA for Fun and Optimisations 2024-2025 ↞ 11 / 32 ↠



Optimisations in SSA Sparse analysis

Conditional Constant Propagation

What is the value of j ? Consider two cases:

if j = 1 always

if sometimes j > 20

▶ We need a more subtle analysis

Gabriel Radanne (M1 - Lyon1 & ENSL) Compilation (#6b) (CAP): SSA for Fun and Optimisations 2024-2025 ↞ 12 / 32 ↠



Optimisations in SSA Sparse analysis

Conditional Constant Propagation

We want to keep track of values precisely!
We denote V[v] the value of v at a program point

V[v] = ⊥ if we have no evidence that v is
assigned

V[v] = 4 if we found evidence that v is
assigned to 4

V[v] = ⊤ if we have found evidence that v is
assigned to at least two different values

▶ This forms a lattice.

Gabriel Radanne (M1 - Lyon1 & ENSL) Compilation (#6b) (CAP): SSA for Fun and Optimisations 2024-2025 ↞ 13 / 32 ↠



Optimisations in SSA Sparse analysis

Conditional Constant Propagation

We also want to keep track of executability:

E [B] = false if we have no evidence that B
can ever be executed

E [B] = true if we have evidence that B can
be executed

Is computing V and E decidable?

Gabriel Radanne (M1 - Lyon1 & ENSL) Compilation (#6b) (CAP): SSA for Fun and Optimisations 2024-2025 ↞ 14 / 32 ↠



Optimisations in SSA Sparse analysis

Conditional Constant Propagation

We will compute an over-approximation.
Let’s try on a simpler non-SSA example.
How would you quantify the space required (in
term of variables and statements)?
Could we do better?

Gabriel Radanne (M1 - Lyon1 & ENSL) Compilation (#6b) (CAP): SSA for Fun and Optimisations 2024-2025 ↞ 15 / 32 ↠



Optimisations in SSA Sparse analysis

Sparse Conditional Constant Propagation

Let’s try on the SSA version now.

We can store V only once for each variable!
This is a sparse analysis.

Gabriel Radanne (M1 - Lyon1 & ENSL) Compilation (#6b) (CAP): SSA for Fun and Optimisations 2024-2025 ↞ 16 / 32 ↠



Optimisations in SSA Sparse analysis

Sparse Conditional Constant Propagation

Let’s try on the SSA version now.

We can store V only once for each variable!
This is a sparse analysis.

Gabriel Radanne (M1 - Lyon1 & ENSL) Compilation (#6b) (CAP): SSA for Fun and Optimisations 2024-2025 ↞ 16 / 32 ↠



Optimisations in SSA Sparse analysis

Sparse Conditional Constant Propagation – back to the big example

Compute V and E

Gabriel Radanne (M1 - Lyon1 & ENSL) Compilation (#6b) (CAP): SSA for Fun and Optimisations 2024-2025 ↞ 17 / 32 ↠



Optimisations in SSA Sparse analysis

Sparse Conditional Constant Propagation – back to the big example

Compute V and E

Gabriel Radanne (M1 - Lyon1 & ENSL) Compilation (#6b) (CAP): SSA for Fun and Optimisations 2024-2025 ↞ 17 / 32 ↠



Optimisations in SSA Sparse analysis

Sparse Conditional Constant Propagation – back to the big example

Compute V and E

Gabriel Radanne (M1 - Lyon1 & ENSL) Compilation (#6b) (CAP): SSA for Fun and Optimisations 2024-2025 ↞ 17 / 32 ↠



Optimisations in SSA Sparse analysis

Abstract Interpretation

We computed V by walking through the program step by step.
We did a “simplified” execution of the program
▶ This is called Abstract Interpretation, an essential tool for program analysis

Gabriel Radanne (M1 - Lyon1 & ENSL) Compilation (#6b) (CAP): SSA for Fun and Optimisations 2024-2025 ↞ 18 / 32 ↠



Optimisations in SSA Control dependencies

1 Optimisations in SSA
Sparse analysis
Control dependencies
A glimpse at loop optimisations

Gabriel Radanne (M1 - Lyon1 & ENSL) Compilation (#6b) (CAP): SSA for Fun and Optimisations 2024-2025 ↞ 19 / 32 ↠



Optimisations in SSA Control dependencies

Dead code?

What about dead code elimination here?

k2 is used by k3

k3 is used by k2

Our previous dead code analysis pass doesn’t
work here.
▶ We need a new notion of dependency

Gabriel Radanne (M1 - Lyon1 & ENSL) Compilation (#6b) (CAP): SSA for Fun and Optimisations 2024-2025 ↞ 20 / 32 ↠



Optimisations in SSA Control dependencies

Control dependencies

Control dependency
We say that block B is control-dependent on A if:

from A We can branch to U and V

A path U → exit doesn’t go through B

All path V → exit go through B

Control dependency Graph
The Control Dependency Graph has an edge from A

to B if B is control dependent on A

Computed using post-dominators!

Gabriel Radanne (M1 - Lyon1 & ENSL) Compilation (#6b) (CAP): SSA for Fun and Optimisations 2024-2025 ↞ 21 / 32 ↠



Optimisations in SSA Control dependencies

Control dependencies

Control dependency
We say that block B is control-dependent on A if:

from A We can branch to U and V

A path U → exit doesn’t go through B

All path V → exit go through B

Control dependency Graph
The Control Dependency Graph has an edge from A

to B if B is control dependent on A

Computed using post-dominators!

Gabriel Radanne (M1 - Lyon1 & ENSL) Compilation (#6b) (CAP): SSA for Fun and Optimisations 2024-2025 ↞ 21 / 32 ↠



Optimisations in SSA Control dependencies

Control dependencies

Gabriel Radanne (M1 - Lyon1 & ENSL) Compilation (#6b) (CAP): SSA for Fun and Optimisations 2024-2025 ↞ 22 / 32 ↠



Optimisations in SSA Control dependencies

Aggressive code elimination

We can use the control dependency graph to perform aggressive code elimination

Similarly to the Conditional Constant Propagation, we assume a statement is dead
until proven otherwise.

Gabriel Radanne (M1 - Lyon1 & ENSL) Compilation (#6b) (CAP): SSA for Fun and Optimisations 2024-2025 ↞ 23 / 32 ↠



Optimisations in SSA Control dependencies

Aggressive code elimination – Algorithm

Mark live any statement which:

1 Performs side effects or returns

2 Defines a variable used in a live statement

3 Is a conditional branch upon which a statement is control-dependent

Then delete all unmarked statements

Gabriel Radanne (M1 - Lyon1 & ENSL) Compilation (#6b) (CAP): SSA for Fun and Optimisations 2024-2025 ↞ 24 / 32 ↠



Optimisations in SSA Control dependencies

Uses of control dependency

Control dependency can also be used for parallelization
▶ If two statements are independent in the CDG, we can run them in parallel!

Gabriel Radanne (M1 - Lyon1 & ENSL) Compilation (#6b) (CAP): SSA for Fun and Optimisations 2024-2025 ↞ 25 / 32 ↠



Optimisations in SSA A glimpse at loop optimisations

1 Optimisations in SSA
Sparse analysis
Control dependencies
A glimpse at loop optimisations

Gabriel Radanne (M1 - Lyon1 & ENSL) Compilation (#6b) (CAP): SSA for Fun and Optimisations 2024-2025 ↞ 26 / 32 ↠



Optimisations in SSA A glimpse at loop optimisations

How to optimize loops?

Loops are where most of computation time is spent.
▶ Crucial to optimize them well

But loops are also much harder to optimize correctly!
Beware incorrect optimizations

Gabriel Radanne (M1 - Lyon1 & ENSL) Compilation (#6b) (CAP): SSA for Fun and Optimisations 2024-2025 ↞ 27 / 32 ↠



Optimisations in SSA A glimpse at loop optimisations

Loop Invariant Code Motion

Extract instructions which are invariant of the loop variable

let a = ...;

let b = ...;

for (let i = 0; i < 100; ++i) {

f(i, a * b);

}

7→

let a = ...;

let b = ...;

let c = a * b;

for (let i = 0; i < 100; ++i) {

f(i, c);

}

How to obtain that information using previously-seen analysis?

Gabriel Radanne (M1 - Lyon1 & ENSL) Compilation (#6b) (CAP): SSA for Fun and Optimisations 2024-2025 ↞ 28 / 32 ↠



Optimisations in SSA A glimpse at loop optimisations

Loop Unswitching

Variant of Loop Invariant Code motion to exchange tests and loops:

for (i = 0; i < 100; ++i) {

if (c) {

// Loop-invariant value.

f();

} else {

g();

}

}

7→

if (c) {

for (i = 0; i < 100; ++i) {

f();

}

} else {

for (i = 0; i < 100; ++i) {

g();

}

}

Gabriel Radanne (M1 - Lyon1 & ENSL) Compilation (#6b) (CAP): SSA for Fun and Optimisations 2024-2025 ↞ 29 / 32 ↠



Optimisations in SSA A glimpse at loop optimisations

Induction Variable Elimination

Induction Variable Elimination (also called “Strength reduction”) replaces iteration
variables by simpler expressions

for (i = 0; i < 100; ++i) {

a[i] = 0; // *(a + i * s)

}

7→
let a100 = a + 100 * s;

for (ai = a; ai < a100; ai += s) {

*a_i = 0;

}

▶ We identify a simpler form for the affine expression A ∗ i+B

Applies particularly to arrays.

Gabriel Radanne (M1 - Lyon1 & ENSL) Compilation (#6b) (CAP): SSA for Fun and Optimisations 2024-2025 ↞ 30 / 32 ↠



Optimisations in SSA A glimpse at loop optimisations

Loop interchange, fusion, fission, . . .

Exchanging loops and cutting them into pieces

▶ Fit into a more general (and powerful) framework: the Polyhedral Model!

Gabriel Radanne (M1 - Lyon1 & ENSL) Compilation (#6b) (CAP): SSA for Fun and Optimisations 2024-2025 ↞ 31 / 32 ↠



Optimisations in SSA A glimpse at loop optimisations

Where are the loops?

By the way: how do we actually find the loops?
▶ Not so simple to identify on a CFG!

A loop has a single entry point and contain a cycle

A header dominates all nodes in the loop

A back edge is an edge t→ h whose head h

dominates its tail t.

A loop is the smallest set of nodes containing a back
edge and whose only entry point is the header.

Gabriel Radanne (M1 - Lyon1 & ENSL) Compilation (#6b) (CAP): SSA for Fun and Optimisations 2024-2025 ↞ 32 / 32 ↠



Optimisations in SSA A glimpse at loop optimisations

Where are the loops?

By the way: how do we actually find the loops?
▶ Not so simple to identify on a CFG!

A loop has a single entry point and contain a cycle

A header dominates all nodes in the loop

A back edge is an edge t→ h whose head h

dominates its tail t.

A loop is the smallest set of nodes containing a back
edge and whose only entry point is the header.

Gabriel Radanne (M1 - Lyon1 & ENSL) Compilation (#6b) (CAP): SSA for Fun and Optimisations 2024-2025 ↞ 32 / 32 ↠


	Optimisations in SSA

