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3 address construction “problems”
Temporary reuse ?

li temp3, 4

mv temp0, temp3

;; temp3 is never used again

li temp4, 0

mv temp1, temp4

temp3 and temp4 could be mapped
to the same physical location.

li temp5, 4

bge ..., else

;; temp5 not used. Its physical

location can be shared.

j end

else:

mv temp6, temp5

end

▶ straight-line code is difficult to reason on.
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A first IR

Need a better data structure to propagate and infer information. We need:

Reason about the flow of the program.

Embeds our three address code.

▶ Control-Flow Graph.
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Control flow Graph

1 Control flow Graph

2 Local optimizations

3 Global optimizations
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Control flow Graph

Definitions

Definition (BB=Basic Block)
Basic block: largest (3-address RISCV) instruction sequence without label.
(except at the first instruction) and without jumps and calls.

Definition (CFG=Control Flow Graph)
It is a directed graph whose vertices are basic blocks, and edge B1 → B2 exists if
B2 can follow immediately B1 in an execution.

▶ two optimisation levels: local (BB) and global (CFG)
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Control flow Graph

An example 1/2

Let us consider the program:

int x,y;

if (x<4)

y=7;

else

y=42;

x=10;

We already generated the (linear code) for a large part of it.
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Control flow Graph

An example 2/2

li temp3, 4
li temp2, 0
bge temp0, temp3, lbl0
li temp2, 1

lbl0: # if false, jump (skip the 'then')
bge temp2, 0, lelse1
li temp4, 7
mv temp1, temp4 # y gets 7
jump lendif1

lelse1:
li temp4 42
mv temp1, temp4 # y gets 42

lendif1:
li temp5, 10
mv temp0, temp5 # end

li temp3 , 4

li temp2 , 0

temp0 >= temp3 ?

start

li temp2 , 1

temp2 >= 0 ?

lbl0

li temp4 , 42

mv temp1 , temp4

lelse1

li temp4 , 7

mv temp1 , temp4

li temp5 , 10

mv temp0 , temp5

lendif1
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Control flow Graph

Identifying Basic Blocks (from 3 address code)

The first instruction of a basic block is called a leader.

We can identify leaders via these three properties:
1 The first instruction in the intermediate code is a leader.
2 Any instruction that is the target of a conditional or unconditional jump is a

leader.
3 Any instruction that immediately follows a conditional or

unconditional jump is a leader.

Once we have found the leaders, it is straighforward to find the basic blocks:
for each leader, its basic block consists of the leader itself, plus all the
instructions until the next leader.
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Control flow Graph

Exercise: CFG by hand

li temp3, 4
li temp2, 0
bge temp0, temp3, lbl0
li temp2, 1

lbl0: # if false, jump (skip the 'then')
bge temp2, 0, lelse1
li temp4, 7
mv temp1, temp4 # y gets 7
jump lendif1

lelse1:
li temp4 42
mv temp1, temp4 # y gets 42

lendif1:
li temp5, 10
mv temp0, temp5 # end

Identify the Leaders using the three
properties

1 The first instruction is a leader.
2 Any instruction that is the target

of a conditional or unconditional
jump is a leader.

3 Any instruction that immediately
follows a conditional or
unconditional jump is a leader.

Identify the Blocks

Draw the Transitions
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Local optimizations

1 Control flow Graph

2 Local optimizations
Basic Blocks DAG Construction
Instruction Selection
Instruction Scheduling

3 Global optimizations
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Local optimizations

Big picture (Basic Block Optimisation)

Front-end → a CFG where nodes are basic blocks.

Basic blocks → DAGs that explicit common computations

u1 := c - d

u2 := b + u1

u3 := a * u2

u4 := u2 * u1

u5 := u3 + u4

+

* *

a +

b -

c d

MULADD

MUL

ADD

SUB

▶ Choose instructions (selection) and order them (scheduling).
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Local optimizations Basic Blocks DAG Construction

2 Local optimizations
Basic Blocks DAG Construction
Instruction Selection
Instruction Scheduling
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Local optimizations Basic Blocks DAG Construction

An Example of BB DAG construction

Useful links : https://www.youtube.com/watch?v=PXTKWvyQUwE and

https://www.cse.iitm.ac.in/~krishna/cs3300/pm-lecture3.pdf for other BB optimisations.
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Local optimizations Instruction Selection

2 Local optimizations
Basic Blocks DAG Construction
Instruction Selection
Instruction Scheduling
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Local optimizations Instruction Selection

Instruction Selection, in general

The problem:

a list of instructions/operations that compute one or more expressions.

map these operations in “real machine instructions”.

at minimum cost.
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Local optimizations Instruction Selection

Instruction Selection

The problem of selecting instructions is a DAG-partitioning problem. But what is
the objective ?

The best instructions:

cover bigger parts of computation.

cause few memory accesses.

▶ Assign a cost to each instruction, depending on their addressing mode.
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Local optimizations Instruction Selection

Instruction Selection: an example

+

ADD(c=2)

+

cte

ADD(c=1)

*

MUL(c=2)

*

cte

MUL(c=1)

+

*

MULADD(c=3)

(In RiscV, mulladd is fmadd (fuse multiply add) and “add with

constants” is addi).

What is the optimal instruction selection for:
+

+ 42

* b

1515 a

▶ Finding a tiling of minimal cost: it is NP-complete (SAT reduction).
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Local optimizations Instruction Selection

Tiling trees / DAGs, in practice

For tiling:

There is an optimal algorithm for trees based on dynamic programming.

For DAGs we use heuristics (decomposition into a forest of trees, . . . )

▶ The literature is plethoric on the subject.
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Local optimizations Instruction Selection

Instruction Selection, in our compiler

Mapping one to one. We don’t use fmadd.
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Local optimizations Instruction Scheduling

2 Local optimizations
Basic Blocks DAG Construction
Instruction Selection
Instruction Scheduling
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Local optimizations Instruction Scheduling

Instruction Scheduling, in general

The problem:

change the order of instructions.

to “optimise’.

without “cutting dependencies”.
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Local optimizations Instruction Scheduling

Instruction Scheduling, what for?

We want an evaluation order for the instructions that we choose with Instruction
Scheduling.

A scheduling is a function θ that associates a logical date to each instruction. To
be correct, it must respect data dependencies:

(S1) u1 := c - d

(S2) u2 := b + u1

implies θ(S1) < θ(S2). We can choose θ(S1) = 0, θ(S2) = 1

▶ How to choose among many correct schedulings? depends on the target
architecture.

Radanne, Gonnord, Moy & al. (M1 - Lyon1 & ENSL) Compilation Courses (#6) (CAP+MIF08): IRs 2024-2025 ↞ 23 / 44 ↠



Local optimizations Instruction Scheduling

Architecture-dependant choices

The idea is to exploit the different ressources of the machine at their best:

instruction parallelism: some machines have parallel units (subinstructions of
a given instruction).

prefetch: some machines have non-blocking load/stores, we can run some
instructions between a load and its use (hide latency!)

pipeline.

registers: see next slide.

(sometimes these criteria are incompatible)
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Local optimizations Instruction Scheduling

Register use
Some schedules induce less register pressure:

In this picture the dates of the instructions are implicit : line 1 is date 1, line 2 is date 2. . .

▶ How to find a schedule with less register pressure?
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Local optimizations Instruction Scheduling

Scheduling wrt register pressure

Result: this is a linear problem on trees, but NP-complete on DAGs (Sethi, 1975).

▶ Sethi-Ullman algorithm on trees, heuristics on DAGs
A slight variation of this algorithm can be found on Wikipedia, the leaves values here are chosen equal to 1 since

our machine does not have any direct access to constant values.
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Local optimizations Instruction Scheduling

Sethi-Ullman algorithm on trees

ρ(node) denoting the number of (pseudo)-registers necessary to compute a node:

ρ(leaf) = 1

ρ(nodeop(e1, e2)) =

max{ρ(e1), ρ(e2)} if ρ(e1) ̸= ρ(e2)

ρ(e1) + 1 else

(the idea for non “balanced” subtrees is to execute the one with the biggest ρ first,
then the other branch, then the op. If the tree is balanced, then we need an extra
register)
▶ then the code is produced with postfix tree traversal, the biggest register
consumers first.
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Local optimizations Instruction Scheduling

Sethi-Ullman algorithm on trees - an example

Min number of (additional) registers
for b2 + 4ac with a,b,c already in
registers ?

+

3

*

2

*

2

b

1

b

1

4

1

*

2

a

1

c

1

The tree traversal then produces the following code:
tmp1 tmp2 tmp3 tmp4

mul tmp1, b, b

mul tmp2, a, c

li tmp3, 4

mul tmp4, tmp2, tmp3

add tmp5, tmp1, temp4

cells in black denote for each instruction the set of entry alive temporaries.
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Local optimizations Instruction Scheduling

Conclusion (instruction selection/scheduling)

Plenty of other algorithms in the literature:

Scheduling DAGs with heuristics, . . .

Scheduling loops (M2IF course on advanced compilation)

Practical session:

we have (nearly) no choice for the instructions in the RISCV ISA.

evaluating the impact of scheduling is a bit hard.

We won’t implement any of the previous algorithms.
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Global optimizations

1 Control flow Graph

2 Local optimizations

3 Global optimizations
Introduction to register allocation
Analysis for optimizations : Liveness
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Global optimizations

Global optimizations

So far, we have taken advantage of basic blocks to make local optimizations,
where we do not need to take care of control flow.
This is not sufficient for all optimizations !

Global Dead Code Elimination

Constant Folding

Loop optimizations

. . .

Register allocation
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Global optimizations

Global optimization in practice

Let’s optimize this function:

int f(int a, int b) {

x=a+b;

y=a*b;

while(y*y>a+b) {

a=a+a;

x=a+b;

}

return x;

}
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Global optimizations Introduction to register allocation

3 Global optimizations
Introduction to register allocation
Analysis for optimizations : Liveness

Radanne, Gonnord, Moy & al. (M1 - Lyon1 & ENSL) Compilation Courses (#6) (CAP+MIF08): IRs 2024-2025 ↞ 33 / 44 ↠



Global optimizations Introduction to register allocation

What for?
Finding storage locations to the values manipulated by the program ▶

registers or memory.

registers are fast but in small quantity.

memory is plenty, but slower access time.

▶ A good register allocator should strive to keep in registers the variables used
more often.
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Global optimizations Introduction to register allocation

What for?

Expected behavior of register allocation:

Input: a CFG with basic blocks with 3-address code (and pseudo-registers,
aka temporaries)

Output: same CFG but without pseudo-registers:
replace with physical registers as much as possible.
if not splill, ie allocate a place in memory.
use the same physical register (or memory location) for as many temporaries as
possible.
all copies assigned to the same physical registers (“moves”) can be removed:
coalescing (optional).
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Global optimizations Introduction to register allocation

The key notion: liveness

Observation
Two variables that are simultaneously alive must be assigned different registers.

(formal definition of alive follows)
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Global optimizations Introduction to register allocation

Register assignment is NP-complete

Theorem
Given P and K general purpose registers, is there an assignment of the variables
P in registers, such that (i) every variable gets at least one register along its entire
live range, and (ii) simultaneously live variables are given different registers ?

Gregory Chaitin has shown, in the early 80’s, that the register assignment problem
is NP-Complete (register allocation via coloring, 1981)
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Global optimizations Analysis for optimizations : Liveness

3 Global optimizations
Introduction to register allocation
Analysis for optimizations : Liveness

Radanne, Gonnord, Moy & al. (M1 - Lyon1 & ENSL) Compilation Courses (#6) (CAP+MIF08): IRs 2024-2025 ↞ 38 / 44 ↠



Global optimizations Analysis for optimizations : Liveness

Liveness analysis

Previously we called variable a pseudo-register or a physical register.

Definition (Alive Variable)
In a given program point, a variable is said to be alive if the value she contains
may be used in the rest of the execution.

May: non decidable property ▶ overapproximation.

Important remark: here a block = a statement/program point. We have the same
kind of analyses with block=basic block.
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Global optimizations Analysis for optimizations : Liveness

An example for live ranges

Definition
A variable is live at the exit of a block if there exists a path from the block to a use
of the variable that does not redefine the variable.

x:=2;

y:=4;

x:=1;

if (y>x)

then z:=y

else z:=y*y ;

x:=z;

x:=2

B1

y:=4

B2

x:=1

B3

y>x ?

B4

z:=y*y

B6

x is not alive here !

z:=y

B5

x:=z

B7 z is alive here

no one is alive here (end)

▶ The information flow is backward: from uses to definitions.
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Global optimizations Analysis for optimizations : Liveness

Liveness by hand!
a:=1

i:=0

L0

k>10 ?

L1

print(a)

L2 j:=i+1

b:=3

j>5 ?

L3

j:=42

k:=k+a

L5
a:=a+b

a:=a+j

k>10 ?

L4

print(k)

L6

bloc live variables
at bloc exit

L0
L1
L2
L3
L4
L5
L6 ∅
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Global optimizations Analysis for optimizations : Liveness

Liveness by hand!
a:=1

i:=0

L0

k>10 ?

L1

print(a)

L2 j:=i+1

b:=3

j>5 ?

L3

j:=42

k:=k+a

L5
a:=a+b

a:=a+j

k>10 ?

L4

print(k)

L6

bloc live variables
at bloc exit

L0 a, i, k
L1 a, i, k
L2 k
L3 i, j, a, k, b
L4 a, i, k
L5 a, i, k
L6 ∅
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Global optimizations Analysis for optimizations : Liveness

How to compute liveness

Dataflow analysis is a technique to compute many properties.

Very versatile

Expensive in general (fix point on the CFG)

▶ Next year in the Static Analysis course!
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Global optimizations Analysis for optimizations : Liveness

Computing liveness: an alternative approach

Instead, we will use an alternative CFG representation that makes it easy to
compute liveness and do program transformations! ▶ Next lesson: The Single
Static Assignment representation
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Local optimizations Instruction Scheduling

Summary
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