
CAP, ENSL, 2024/2025

Homework (DM)
Compilation and Program Analysis (CAP)

Algebraic Effects and Effect Handlers

Instructions:

1. Every single answer must be informally explained AND formally
proved.

2. Using LaTeX is NOT mandatory at all.

3. Vous avez le droit de rédiger en Français.

In this Homework, you will study algebraic effects and handlers. The language we will con-
sider differs in nature from WHILE: it has a rather functional nature, as opposed to imperative.
Algebraic effects are a relatively modern creation, essentially popularized by Matija Pretnar’s
PhD thesis in 2010. They have since then percolated into real world languages, and are notably
part of OCaml 5.

1 Preliminaries: lambda-calculus

We first introduce λ, a simple purely functional programming language whose syntax is depicted
on Figure 1. λ is quite standard, except perhaps that values and computations are explicitly split
into two categories. Values are "inert", they do not reduce, and include (), the only value of the
unit type, booleans, natural numbers, variables, and (anonymous) functions. Computations are
proper programs: they include return statements, sequences, conditionals, and function appli-
cation. Figure 2 defines λ’s (small step) operational semantics. The last four rules describe the
reduction of the computations, while the first one lifts this reduction under evaluation contexts.

Page 1 on 9

Housework CAP - 2024-25

Values:

v ∈ V ::= () | tt | ff | n Constants
| x Variables
| λx.c Functions

Computations:

c ∈ C ::= return v Return
| let x = c1 in c2 Sequence
| if v { c1 } else { c2 } Conditional
| v1 v2 Application

Figure 1: Grammar for λ

Small step relation for λ: c⇝ c′

We define the evaluation contexts C as:

C ::= [] | let x = C in c

c⇝ c′

C[c]⇝ C[c′] let x = return v in c2 ⇝ c2[v/x] if tt { c1 } else { c2 }⇝ c1

if ff { c1 } else { c2 }⇝ c2 (λx.c) v⇝ c[v/x]

Figure 2: Operational semantics for λ

2 A calculus with effects: λeff

The core idea of algebraic effects is to think of your programs as purely functional programs,
but with the ability to ask questions to the environment through operations: impure behaviour
arises from a set of operations.

For instance, suppose your program interact with a memory cell containing a single bit of
information. You would traditionally think of your program as a function taking a boolean as
input, your state, and returning a new boolean, the updated state. Rather, we will think of our
programs as a series of interaction with this cell through an interface of two operations: get to
read the value of the cell, and put to update the value of the cell.

Consider now a program flip negating the content of the cell. It should be thought of as a
sequence of two actions: get the content of the cell, then put the negation of the value read, and
terminate, returning the unit value (). This program can be represented as something very close
to an AST, as depicted on the left hand-side of Figure 3.

You may notice that this tree explains how the computation proceeds no matter which value
is read, but does not explain how to know what value should be read in a concrete run, or even
what is a cell for that matter. Worst, if for some reason our flip program were to read the cell
twice in a row before updating the value, we would result in the right hand-side of Figure 3.
Here, some leaves feel weird, suggesting we could read first true and then false from our cell
without any update in between.

Indeed, we have described a program that interacts with an environment through an interface
of operations, but we have not described the environment! This is where effect handlers come into

Page 2 on 9

Housework CAP - 2024-25

get

put(ff)

()

put(tt)

()

tt ff

get

get

put(ff)

()

put(tt)

()

get

put(ff)

()

put(tt)

()

tt

tt ff

ff

tt ff

Figure 3: Flipping the content of a cell: tree representation

Values:

v ∈ V ::= . . .
| h handler

Computations:

c ∈ C ::= . . .
| with h handle c Handling

Handlers:

h ∈ H ::= handler { return x 7→ cr, Return clause
op1(x, k) 7→ c1; . . . ; opn(x, k) 7→ cn} Operational clauses

Figure 4: Grammar for λeff

Small step relation for λeff: c⇝ c′

In the following rules, we set h = handler {return x 7→ cr, op1(x, k) 7→ c1; . . . ; opn(x, k) 7→ cn}

with h handle return v⇝ cr[v/x]

with h handle C[perform opi(v)]⇝ ci[v/x, λy.with h handle C[return y]/k]

Figure 5: Operational semantics for λeff

play: they provide implementations to the operations. They can be thought of as an extension of
exception handling: the control flow is passed to a harness catching the operations, and deciding
what to do in its lieu. For instance, the handler may implement our get and put effects as
mentioned above, by explicitly passing as argument the cell.

A syntax for λeff. Let’s now package these ideas into a calculus. Figure 4 extends λ’s syntax
with two new kind of computations. One can perform an operation op over an argument v
with the computation perform op(v). Furthermore, computations can be wrapped into an effect
handler. This handler specifies how the computation must proceed when one of two situations
arises. If the computation returns, the Return clause triggers. When an operation is performed,
the corresponding Operational clause happens. In this case, the corresponding computation
ci depends on the argument of the operation (bound to x), but also on the continuation of the

Page 3 on 9

Housework CAP - 2024-25

computation (bound to k): contrary to exception handlers, we usually want to get back to our
main computation after falling in our harness! Figure 5 explicit these new semantic rules.
Note: since the semantics is a reduction between computations, normal forms (i.e., fully reduced
terms) in λeff are of the shape return (v).

Conventions: to simplify the writing of programs, we introduce the following notations:

• λeff variables are in bold: x.

• When the return close of a handler is omitted, it is assumed to be the identity, i.e.,
λx.return x.

• We write op instead of op(()) when an operation expects no argument, such as get.

• We write c1;; c2 for let x = c1 in c2 if x does not appear in c2.

• We will allow ourselves to use data-types such as pairs or lists, as well as mathematical
operations on booleans and integers, even if they have not been formally defined in the
language.

We can finally rewrite flip in λeff:

flip ≜ let x = perform get() in perform put(neg(x)).

If we tried to evaluate flip according to our operational semantics, we would be immediately
stuck. We hence implement a handler that passes around the boolean cell.

hcell ≜ handler


return x 7→ λb.return x
get(k) 7→ λb.(k b) b

put(x, k) 7→ λb.(k ()) x


In the implementation of get, the current value of the cell is passed to the continuation, and the
value of the cell is left unchanged. For put, we simply pass (), but update the value of the cell.
We can finally get a full computation, which expects an initial cell to run ci:

(with hcell handle flip) ci

Question #1
Write a λeff computation cand that takes a natural number n as argument, and returns whether
n is odd if the cell is set to true, and whether n is even if the cell is set to false.

Question #2
Assuming λeff is extended with pairs and lists, propose an alternate handler for get and put

denoted hlog that logs the history of all booleans that are written via put, and returns this
history at the end of the computation in addition to the main value computed.

Question #3
Consider

cex ≜ let x = get in let y = get in put x;; return orb x y

where orb is the boolean disjunction. Show the traces of execution of with hcell handle cex
and with hlog handle cex applied to an initial cell set to true.

Page 4 on 9

Housework CAP - 2024-25

Question #4
Consider now a new effect: failure. To do so, we introduce a new operation fail whose
handler discards the continuation:

h f ail ≜ handler {fail(k) 7→ return ()}

We can now consider two ways to nest handlers: with h f ail handle with hlog handle c or
conversely with hlog handle with h f ail handle c.
Are those equivalent? Justify your answer either by an informal argument, or a counter-
example.

Question #5
We now consider the case of non-determinism through an operation toss() which picks ran-
domly a boolean. Propose an interface and handler htoss implementing the non-determinism
by collecting all possible results.

2.1 Algebraic Simplification

We have informally qualified some handlers as correct or incorrect. This intuition has a formal
ground, hinted at the name of algebraic effects. Operations form an algebra, i.e., their signature
comes with a set of equations that axiomatize their behavior.

For instance, let us consider the case of get/put. We may axiomatize the interaction between
each pair of operations, i.e.:

put v1;; put v2;; c ≡ put v2;; (1)
put v;; let x = get in c ≡ put v;; c[v/x] (2)
let x = get in put x; c ≡ let x = get in c (3)

let x = get in let y = get in c ≡ let x = get in c[x/y] (4)

Spelled out, these equations state that (1) two consecutive puts reduce to the latest one, (2) a put
determines uniquely the result of a get, (3) putting in memory the same cell as the one we have
read is useless, and (4) two consecutive gets can be condensed to a single one.

Some care must be taken in this definition: when introducing a piece of state such as with hcell ,
the equality c1 ≡ c2 should be understood as (with hcell handle c1) si and (with hcell handle c2) si
reduce to the same value for any initial state si.

"Correct" handlers for get/put are hence defined in the rest of this section as the ones that satisfy
these four equations.

Question #6
Propose an alternate handler hwrong for get and put that would be blatantly semantically
incorrect.

Question #7
Check that hcell is correct. Is hlog correct?

Question #8
Prove that this axiomatization is not minimal by deriving (4) from the three other equations.

Page 5 on 9

Housework CAP - 2024-25

Question #9
These equations can be an opportunity for optimization! Write a program transformation
that exploits the cell algebra. This transformation should be defined by mutual induction on
the syntax of values and computations, i.e.:

J()Kv = () . . .
Jv1 v2Kc = Jv1Kv Jv2Kv . . .

Justify its correctness informally—in particular, which hypothesis must you impose on the
handlers used in your program?

Question #10 (Difficult)
Open question

Does your transformation optimize the following program:

let x = get in let y = 2 ∗ x in let z = get in return y + z.

Discuss how you could improve the transformation to better optimize programs.

Question #11
Recall the non-determinism operation from Question #4: extend it with equations to suggest
an algebra of non-determinism.

3 Compilation to CPS

We now wish to compile our language to another without support for algebraic effects; for in-
stance Javascript, to run our programs in the browser! For this purpose, we must translate
algebraic effects into simpler construct. Here, we will target simple functions, using the so-called
Continuation Passing Style (CPS). In continuation passing style, the control flow is made explicit
via an argument, usually denoted k and called the kontinuation, which is the future of the execu-
tion. For instance, let us consider the program flip ≜ let x = perform get() in perform put(x)
defined earlier.

flipcps ≜ λk.λkget.λkput.(kget (λx.kput (x, k)))

We can then consider the following program:

pcps ≜ λk.(flipcps (λx.λb.return (k x)) (λk.λb.(k b) b) (λ(x, k).λb.(k ()) x))

In the rest of this section, we will aim to obtain this program from a suitable input.

Question #12
To which handler is this program equivalent ? Justify informally.

Page 6 on 9

Housework CAP - 2024-25

3.1 Code without closure

To make our task initially simpler, we consider a sublanguage of λeff without λ-expressions and
function calls, named λ−

eff. The function JeKH
k compiles the λ−

eff expression e to Continuation
Passing Style given a continuation k and a (meta) handler H. It is shown in Figure 7. The idea
is, as we progress through handlers, to map each label op used to designate an algebraic effect
with a continuation that indicates the code to execute when this effect is performed. H is thus a
map from labels op to their continuations kop. Furthermore, k is a regular function symbol which
indicates the current continuation.

H ::= {op 7→ k} Effect continuation
| H ∪ H′ Union of handlers

Figure 6: Handler Continuations

JxKH
k = x

JvKH
k = v where v ∈ {(), tt, ff} ∪ Z

Jreturn vKH
k = k JvKH

k

Jif v { c1 } else { c2 }KH
k = if v { Jc1K

H
k } else { Jc2KH

k }
Jlet x = c1 in c2KH

k = ???

Jperform op(v)KH
k = kop v where {op 7→ kop} ∈ H

t

with

{
return x 7→ cr,
opi(x, k) 7→ ci, for 0 ≤ i < n

}
handle c

|H

k

=

let kr = λx. JcrKH
k in

let kopi = λx.λk. JciK
H
k in for 0 ≤ i < n

JcK
H∪{opi 7→kopi |0≤i<n}
kr

Figure 7: Compilation of effects to CPS.

Question #13
Translate cex to CPS, and execute it with an initial cell set to true.

Question #14
In the translation of λ−

eff, do the meta handlers H appear at runtime? Explain their use.

Question #15
Give a rule for Jlet x = c1 in c2KH

k without using let. Where should k be used ? Justify the
correctness informally.

Question #16
State (without proving) the correctness criterion for the compilation function JeKH

k .

Hint: this doesn’t talk about soundness of the source language!

Page 7 on 9

Housework CAP - 2024-25

Question #17
With λ−

eff, we have neglected lambda-expressions. What is the problem with extending our
compilation function to lambda-expressions? Give an example to illustrate the issue.

3.2 Implementing lambdas with dynamic handlers

As a first approach to handle lambda-expressions, we now introduce a new class of values:
dynamic handlers! Similarly to before, handlers are maps from operations to continuations. But
additionally, they can be bound to variables and composed. For instance,

λx.(λH.let H′ = H ∪ {incr 7→ cincr} in H′(get) + H′(incr) 3)

The extended grammars and rules are given below. The idea is that all lambda-expressions now
take two additional arguments: the current continuation, and the handler continuations.

v ::= · · · | H Dynamic Handler Continuations
H ::= · · · | H Handler Variables

Figure 8: Dynamic Handler Continuations

Jλx.cKH
k = λx.λk′.λH′. JcKH′

k′

Jv1 v2KH
k = ???

Jperform op(v)KH
k = ???

Figure 9: Compilation rules, extended for lambda-expressions.

Question #18
Give the rule for application. Justify it informally.

Question #19
We have extended the notion of handler to be used dynamically.

Provide the new evaluation rules and extend the rule for perform. What changes compared
to the previous rule ?

Question #20
Translate let f = λ().flip in with hcell handle f () with this new technique.

Question #21
Prove your correctness theorem only on the “with h handle c” case.

Question #22

Page 8 on 9

Housework CAP - 2024-25

Consider the following term.

let f = λx.(with {rand() 7→ crand} handle perform set(x);; perform rand()) in

with hcell handle f 12

Translate it, and execute it. How many time is the operation of handlers union executed ?

Question #23
Propose a code simplification to reduce the number of handlers union.

Question #24
Consider a program without any effects. What performance penalties does our compilation
to CPS incur ?

3.3 Optimising lambdas with an effect analysis

We now want to analyze a closure to know which effect it can raise, and use this information to
optimise the compilation of lambdas.

Let us consider a judgement Effects(c) = op0, . . . , opn−1 which indicates that the execution of c
can only perform effects amongst op0, . . . , opn−1. We also consider Effects(v) =

op0,...,opn−1−−−−−−→ which
indicates that v is a function which, when called, can only perform effects amongst op0, . . . , opn−1
(no matter what argument the function is called on).

For instance Effects(flip) = {get; put}

Question #25
Propose new compilation rules using this judgement to avoid translating effect-less functions
to CPS. Justify their correctness.

Question #26 (Difficult)
Propose compilation rules that avoid the use of dynamic handler completely. Justify their
correctness.

Question #27 (Difficult)
Open question

What are the techniques that could be used to implement Effects(c) = Propose ideas.

Page 9 on 9

	Preliminaries: lambda-calculus
	A calculus with effects: eff
	Algebraic Simplification

	Compilation to CPS
	Code without closure
	Implementing lambdas with dynamic handlers
	Optimising lambdas with an effect analysis

