
Lab 5
Smart IRs, part B: Register allocation

Objectives

• Compute live ranges and use them to construct the interference graph.
• Allocate registers and produce final “smart” code.
• Labs 5a and 5b are due on https://etudes.ens-lyon.fr (NO EMAIL PLEASE), before 2024-11-18 23:59

2024-11-25 23:59. More instructions in section 5.5.

During this Lab, you will modify the following files TP05/SmartAllocator.py, TP05/LivenessSSA.py,
TP05/SequentializeMoves.py and TP05/ExitSSA.py.

You already used NaiveAllocator and AllInMemAllocator in lab 4 (the mapping from temporary to phys-
ical register or memory location was provided to you, and you had to modify the 3 address code to take this
mapping into account). We first complete LivenessSSA, which computes liveness information on SSA pro-
grams. Next, we implement SmartAllocator which uses the liveness information to map temporaries to phys-
ical registers in an optimized way, and uses memory (i.e. spilling) only when necessary. Read the body of
SmartAllocator.prepare(), that gives the main steps of the allocation: compute liveness, build the conflict
graph, color this graph, and finally modify the 3 address code to get the final executable.

Finally, we will adapt SSA exit to the smart allocator, because φ nodes imply parallel moves that have to be
handled specially (with windmills, as seen in the course).

5.1 Check your previous lab

To begin this lab, you need to finish the implementation of the previous one. Make sure it is working correctly
with make test-lab4 MODE=codegen-ssa to run the test suite.

5.2 Liveness analysis and Interference graph

To build the interference graph and proceed with the allocation, we need the liveness analysis. This is done
in the TP05/LivenessSSA.py file. We use two pieces of information at each instruction: live in, marking
variables which are alive before the instruction, and live out, for the variables alive after the instruction. We
will store only the liveout information for each instruction.

The liveness algorithm proceeds by starting from each use of a variable and then propagating liveness
backward until it reaches a definition. The recursion is bound by blocks to ensure termination. Here is the
complete pseudo-code for the algorithm seen during the course.

For each statement S in the program:
OUT[S] = {}

For each variable v in the program:
For each statement S that uses v:
livein_at_instruction(S, v)

con�icts_on_phis()

livein_at_instruction(S, v):
if S is a phi node and v is used in S:
Bpred = predecessor of B associated to v in S
liveout_at_block(Bpred, v)

else if at the beginning of block B:
for each Bpred in pred(B):
liveout_at_block(Bpred, v)

Laure Gonnord, Matthieu Moy, Gabriel Radanne et al. 1/6

https://etudes.ens-lyon.fr

5.2. LIVENESS ANALYSIS AND INTERFERENCE GRAPHLAB 5. SMART IRS, PART B: REGISTER ALLOCATION

else:
Spred = pred(S):
liveout_at_instruction(Spred, v)

liveout_at_instruction(S, v):
OUT[S] = OUT[S] ∪ {v}
if S does not de�ne v:
livein_at_instruction(S, v)

liveout_at_block(B, v):
if v was not propagated in B:
S = last instruction of B
liveout_at_instruction(S, v)

Recall that we always generate move instructions for φ nodes. This means that all variables newly intro-
duced by φ instructions have to be in conflicts with one-another. The method con�icts_on_phis() must
ensure this is the case by marking these variables as alive in the φ nodes. It is called after the program above
(see the run method).

This algorithm is partially implemented inTP05/LivenessSSA.py. In particular, the runmethod initializes
and populates the liveout dictionary. We recall that variables defined (resp. used) by an instruction instr are
available through instr.de�ned() (resp. instr.used()).

EXERCISE #1 Ï Liveness Analysis on SSA

This exercise is the most important of the Lab!

Complete the procedures liveout_at_instruction, livein_at_instruction, liveout_at_block and con�ict_on_phis
to implement the pseudo-code above.

Carefully check your results are correct at least with the examples of the TP04/tests/provided/data�ow/
directory. As an example, here is a possible output for data�ow/df04.c, obtained with the command

python3 MiniCC.py --mode=codegen-ssa --reg-alloc smart --debug TP04/tests/provided/data�ow/df04.c

(temp numbering may differ):

Liveout: [
Block lbl_div_by_zero_0_main: {...}
Block lbl_end_if_1_main: {
"temp_15 = φ({else_2_main: temp_19})": {temp_15},
"temp_16 = φ({else_2_main: temp_20, main_7_main: temp_22})": {temp_15,temp_16},
"temp_17 = φ({main_7_main: temp_21})": {temp_15,temp_17,temp_16},
"# Return at end of function:": {},
"li a0, 0": {},
"return": {}}
Block lbl_else_2_main: {
"li temp_19, 5": {temp_19},
"mv temp_20, temp_19": {temp_20,temp_19},
"j lbl_end_if_1_main": {temp_20,temp_19}}
Block lbl_main_7_main: {
"li temp_21, 4": {temp_21},
"mv temp_22, temp_21": {temp_22,temp_21},
"j lbl_end_if_1_main": {temp_22,temp_21}}
Block lbl_end_relational_3_main: {
"temp_14 = φ({main_6_main: temp_23, main_5_main: temp_13})": {temp_14},
"beq temp_14, zero, lbl_else_2_main, lbl_main_7_main": {}}
Block lbl_main_6_main: {
"li temp_23, 1": {temp_23},
"j lbl_end_relational_3_main": {temp_23}}
Block lbl_main_5_main: {
"li temp_8, 0": {},
"li temp_9, 0": {},
"# (stat (assignment x = (expr (atom 2))) ;)": {},
"li temp_10, 2": {temp_10},

Laure Gonnord, Matthieu Moy, Gabriel Radanne et al. 2/6

5.3. REGISTER ALLOCATION AND CODE PRODUCTIONLAB 5. SMART IRS, PART B: REGISTER ALLOCATION

"mv temp_11, temp_10": {temp_11},
"# (stat (if_stat if ((expr (expr (atom x)) < (expr (atom 4)))) (stat_block (stat (assignment x = (expr

(atom 4))) ;)) else (stat_block (stat (assignment x = (expr (atom 5))) ;))))": {temp_11},
"li temp_12, 4": {temp_12,temp_11},
"li temp_13, 0": {temp_13,temp_12,temp_11},
"bge temp_11, temp_12, lbl_end_relational_3_main, lbl_main_6_main": {temp_13}}
]

EXERCISE #2 Ï Interference graph
The interference graph contains an edge (x, y) if temporaries x and y are in conflict. It is built using the liveness
information given by the function SmartAllocator.build_interference_graph.

We recall that two temporaries x, y are in conflict if they are simultaneously alive after a given instruction,
which means:

• there exists an instruction i in a block b and x, y ∈ liveout[b, i]
• OR there exist an instruction i in a block b such that x ∈ liveout[b, i] and y is defined in the instruction

i .
To understand why the last case is needed, consider the following list of instructions:

y=2
x=1 // Can x and y be mapped to the same place? Obviously not.
z=y+1

where x is not alive after the x=1 statement, however x is in conflict with y since we generate the code for x=1
while y is alive1.

From the result of the previous exercise, the code in LivenessSSA builds a self._liveness._liveout field
of type Dict[tuple[Block, Statement], Set[Temporary]] that gives the set of temporaries that are live after
a given instruction. Use this data to construct the interference graph of your program (this is done by the
function build_interference_graph).

You need to iterate over each instruction, and look at which temporaries are in conflict at this place accord-
ing to the liveness analysis (approximately 10 lines of code).

The library contains an undirected graph API in Lib/Graphes.py for that. Use the --graphs option and
relevant tests to validate your code.

As an example, here is part of the conflict graph that should be obtained for df04.c (temp ordering and
numbering may differ):

temp_0 temp_1 temp_2 temp_3 temp_4 temp_5 temp_6 temp_7 temp_8 temp_9 temp_10

temp_11

temp_12

temp_13 temp_14

temp_15

temp_16

temp_17 temp_18

temp_19

temp_20

temp_21

temp_22 temp_23

5.3 Register allocation and code production

We will implement the following algorithm for register allocation:
• Color the interference graph with an infinite number of colors, using the first ones as much as possible.
• The first len(GP_REGS) colors will be mapped to registers.
• All the other variables will be allocated on the stack. For each color, we use a memory location according

to their coloring number.
• To add the moves corresponding toφ nodes when exiting SSA form, we may have to load or store instead

of doing moves between registers, according to whether the source and target are mapped to registers or
memory locations.

Then the 3 address code modification:
• for non-spilled variable: replace the temporary with its associated color/register, as we did for the “naive”

allocator.
• for spilled variables: add ld / sd statements as needed and replace the temporary with one of s1, s2, s3

as we did for the “all in mem” allocator.
1Another solution consists in eliminating dead code before generating the interference graph.

Laure Gonnord, Matthieu Moy, Gabriel Radanne et al. 3/6

5.3. REGISTER ALLOCATION AND CODE PRODUCTIONLAB 5. SMART IRS, PART B: REGISTER ALLOCATION

Some help:

• GP_REGS is an array of registers available for the register allocation.

• An element of type Register can be obtained from a given register color with the helper function
GP_REGS[coloringreg[xxx]], where coloringreg is the graph coloring returned by the .color() func-
tion, and for Offset you have the method self._fdata.fresh_o�set() that returns a fresh one (see the
documentation).

• The easiest way to build alloc_dict is probably to iterate over all the temporaries of the program, and for
each temporary check the corresponding color to associate it to the right register or memory location in
alloc_dict.

• To launch MiniCC.py with the smart allocator, use --reg-alloc smart. To run the test suite, use make
test-smart MODE=codegen-ssa.

EXERCISE #3 Ï Smart Register Allocation: implement!
In this exercice, you have first to complete method SmartAllocator.smart_alloc() to perform an allocation
based on a graph coloring. The purpose of this method is to allocate a physical register or a memory location
for each temporary in the program. Next, you will have to complete the function replace that replaces the
temporary operands of a given instruction according to the allocation computed by smart_alloc().

Use the algorithm and the coloration method of the Lib/Graphes class to allocate registers or offsets in
smart_alloc(). The allocation is followed by statement rewriting, like in previous lab. You need to implement
it in SmartAllocator.py (replace): it is very similar to the previous lab’s version, but you have to deal with both
memory locations and registers in the same function.

Validate your allocation on tiny well chosen test files (especially tests that augment the register pressure)
and all the benchmarks of the previous lab, using --reg-alloc smart.

On the df04.c example, the graph coloring succeeds and the part shown above becomes:

temp_0 temp_1 temp_2 temp_3 temp_4 temp_5 temp_6 temp_7 temp_8 temp_9 temp_10

temp_11

temp_12

temp_13 temp_14

temp_15

temp_16

temp_17 temp_18

temp_19

temp_20

temp_21

temp_22 temp_23

Each color+shape pair indicates a different location. Temp numbering and coloring may be different in your
output.

EXERCISE #4 Ï SSA exit for allocated registers

In your previous implementation of SSA exit, from lab 5a, you added a block containing one move per
relevant φ instruction. All the assignments in a set of φs are supposed to be executed “in parallel”. In the cases
of the naive and all-in-mem allocators, everything worked fine because there was no register/memory location
reuse at all. Now that we are potentially allocating several (non-interfering) temporaries to the same register,
we need to be more careful.

Consider a block starting with the following φ instructions:

temp_1 = φ(temp_5, ...)
temp_2 = φ(temp_6, ...)
temp_3 = φ(temp_7, ...)
temp_4 = φ(temp_8, ...)

and the following allocation:

{temp_8: s4, temp_5: s5, temp_7: s6, temp_6: -8(FP),
temp_4: s4, temp_1: -8(FP), temp_3: s5, temp_2: s6}

Laure Gonnord, Matthieu Moy, Gabriel Radanne et al. 4/6

5.3. REGISTER ALLOCATION AND CODE PRODUCTIONLAB 5. SMART IRS, PART B: REGISTER ALLOCATION

Clearly, there is a cycle in the assignments. A naive implementation of the moves would result in incorrect
code. Furthermore, one of the locations is in memory: a simple move instruction will not work.

The solution of the first problem is to find a correct order of moves that accounts for cycles and use an
extra register to implement said cycles. The second problem can be solved by replacing the standard mv
instruction by stores and loads as appropriate when one of the operand is in memory. Two functions in
SequentializeMoves.py will allow to deal with these issues. You have to complete the implementation of
sequentialize_moves which takes a set of moves parallel_moves between Register or Offset, and returns a cor-
rect sequence of instructions, using an extra register tmp to implement swaps if necessary. This corresponds
to the lecture you had about windmills.

Then, you have to write the function generate_smart_move which takes a destination and a source that
might be Register or Offset, and returns a sequence of instructions implementing the assignment.

Finally, rewrite generate_moves_from_phis in ExitSSA.py to use these new functions (or write another
function to do so, with an explicit name like generate_moves_from_phis_smart, and use the is_smart pa-
rameter of the exit_ssa function to use the latter when allocating with the Smart Allocator). To be able to call
your function from SequentializeMoves.py, you have to add at the beginning of ExitSSA.py the following:

from TP05.SequentializeMoves import sequentialize_moves

1. Write on paper the sequence of instructions to implement the example above after allocation and SSA
exit.

2. Write the implementation of sequentialize_moves, to sequentialize a set of parallel moves given by φ
nodes. It proceeds in two steps: 1) Generate moves from all the leaves 2) Once there are no more leaves,
only cycles remain. Handle them using the extra register provided. Here is the pseudo-code for the part
of this function you have to complete (the code provided buids the graph from the parallel moves given,
and transforms the list of moves into actual RISCV instructions).

sequentialize_moves(G)=
moves = []
For each vars v without successors in G:

For src in pred(v):
moves := moves + (v, src)

G := G \ {v}
For each cycle in G:

previous := tmp
for v in reversed(cycle):

moves := moves + (previous, v)
previous := v

moves := moves + (previous, tmp)
return moves

3. Write the implementation of generate_smart_move. Be mindful of the four potential cases: either the
source and destination are both Register, both Offset, the first is a Register and the second an Offset, or
the opposite.

4. Rewrite your original implementation of generate_moves_from_phis to implement SSA exit with al-
location. First generate a set of (dest,src) moves (there can be both Register or Offset in the pairs) to
provide to sequentialize_moves, which generates the desired list of instructions.

EXERCISE #5 Ï Massive tests
Test your implementation on all test files you have. For that purpose,
make test-codegen MODE=codegen-ssa
runs your compiler on the whole test suite, while
make test-smart MODE=codegen-ssa
only runs it on tests from lab 5 (this is less thorough but faster).

Make sure no debug output (print_dot...) is printed when options --debug, --graphs, --dom-graphs and
--ssa-graphs are not given. In particular, we do not want any pdf file to be opened when we will use make
test-codegen MODE=codegen-ssa on your delivered code.

Laure Gonnord, Matthieu Moy, Gabriel Radanne et al. 5/6

5.4. EXTENSIONS LAB 5. SMART IRS, PART B: REGISTER ALLOCATION

Do not forget to check that your test suite has a good coverage of the files relevant to Lab 5. To see detailed
information on coverage, open htmlcov/index.html in your web browser after a run of make test-codegen
MODE=codegen-ssa.

5.4 Extensions

EXERCISE #6 Ï Optimising swaps
Improve the algorithm of sequentialize_moves to not use a supplementary register for cycles of size 1, as well
as for cycles of size 2 between registers only.

5.5 Final delivery

We recall that your work is personal and code copy is strictly forbidden.

EXERCISE #7 Ï Archive
Labs 5a and 5b are due on the course’s webpage on

https://etudes.ens-lyon.fr/

Python code and C test cases will be graded. Late deliveries will get a penalty of 1 point per hour. We will
thoroughly check your code for plagiarism.

Type make tar to obtain the archive to send (change your name in the Makefile before!). Your archive must
also contain tests (TESTS!) and a (minimal) README-SSA.md with your name, the functionality of the code,
how to use it, your design choices if any, any extension you implemented, and known bugs you could not
solve.

Laure Gonnord, Matthieu Moy, Gabriel Radanne et al. 6/6

https://etudes.ens-lyon.fr/

	Smart IRs, part B: Register allocation
	Check your previous lab
	Liveness analysis and Interference graph
	Register allocation and code production
	Extensions
	Final delivery

