
Compilation and Program Analysis (#3) :
Types, and Typing MiniWhile

Yannick Zakowski

Master 1, ENS de Lyon et Dpt Info, Lyon1

2024-2025

Book of the week

Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation (#3) (CAP+MIF08)): typing 2024-2025 ↞ 2 / 40 ↠

So, what is it about?

A type system is a tractable syntactic method for prov-
ing the absence of certain program behaviors by clas-
sifying phrases according to the kinds of values they
compute.
(Pierce, Types and Programming Languages, 2002)

Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation (#3) (CAP+MIF08)): typing 2024-2025 ↞ 3 / 40 ↠

So, what is it about?

A type system is a tractable syntactic method for prov-
ing the absence of certain program behaviors by clas-
sifying phrases according to the kinds of values they
compute.
(Pierce, Types and Programming Languages, 2002)

Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation (#3) (CAP+MIF08)): typing 2024-2025 ↞ 3 / 40 ↠

So, what is it about?

A type system is a tractable syntactic method for prov-
ing the absence of certain program behaviors by
classifying phrases according to the kinds of val-
ues they compute.
(Pierce, Types and Programming Languages, 2002)

Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation (#3) (CAP+MIF08)): typing 2024-2025 ↞ 3 / 40 ↠

So, what is it about?

A type system is a tractable syntactic method for
proving the absence of certain program behaviors
by classifying phrases according to the kinds of
values they compute.
(Pierce, Types and Programming Languages, 2002)

Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation (#3) (CAP+MIF08)): typing 2024-2025 ↞ 3 / 40 ↠

Couteau à viande, couteau à poisson

How should the following program behave?

"5" + 37

a compilation error? (OCaml)

an execution error? (Python)

the int 42? (Visual Basic, PHP)

the string "537"? (Java, JavaScript)

anything else?

We have two camps here: OCaml and Python somehow
complain, the others... find a way.

Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation (#3) (CAP+MIF08)): typing 2024-2025 ↞ 4 / 40 ↠

Couteau à viande, couteau à poisson

How should the following program behave?

"5" + 37

a compilation error? (OCaml)

an execution error? (Python)

the int 42? (Visual Basic, PHP)

the string "537"? (Java, JavaScript)

anything else?

We have two camps here: OCaml and Python somehow
complain, the others... find a way.

Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation (#3) (CAP+MIF08)): typing 2024-2025 ↞ 4 / 40 ↠

Let’s type then

The broader question becomes: when should the program

e1 + e2

be legal? And what of its semantics can and must I know to
understand what contexts can legally use this program?

▶ The art of typing: an analysis that associates a type to each
term of the language, and rejects undesired programs.

Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation (#3) (CAP+MIF08)): typing 2024-2025 ↞ 5 / 40 ↠

Let’s type then

The broader question becomes: when should the program

e1 + e2

be legal? And what of its semantics can and must I know to
understand what contexts can legally use this program?

▶ The art of typing: an analysis that associates a type to each
term of the language, and rejects undesired programs.

Programs are the terms generated by the BNF.

Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation (#3) (CAP+MIF08)): typing 2024-2025 ↞ 5 / 40 ↠

Let’s type then

The broader question becomes: when should the program

e1 + e2

be legal? And what of its semantics can and must I know to
understand what contexts can legally use this program?

▶ The art of typing: an analysis that associates a type to each
term of the language, and rejects undesired programs.

Programs are the well typed terms generated by the BNF.

Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation (#3) (CAP+MIF08)): typing 2024-2025 ↞ 5 / 40 ↠

To type, but when?

Typing error

print("Hello")

x = 1.0 + "you can't add a string to a float"

; Will the program get to scream "Hello" before erroring in
agony?

Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation (#3) (CAP+MIF08)): typing 2024-2025 ↞ 6 / 40 ↠

When?

Dynamic typing (during execution): Lisp, PHP, Python,
JavaScript

Static typing (at compile time, after lexing+parsing): C,
Java, OCaml

Hybrid: allow typing annotations on dynamically typed
languages (Python with mypy or Pyright, JavaScript with
TypeScript, etc.). See also: Gradual Typing.

▶ This course: static typing.

Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation (#3) (CAP+MIF08)): typing 2024-2025 ↞ 7 / 40 ↠

When?

Dynamic typing (during execution): Lisp, PHP, Python,
JavaScript

Static typing (at compile time, after lexing+parsing): C,
Java, OCaml

Hybrid: allow typing annotations on dynamically typed
languages (Python with mypy or Pyright, JavaScript with
TypeScript, etc.). See also: Gradual Typing.

▶ This course: static typing.

Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation (#3) (CAP+MIF08)): typing 2024-2025 ↞ 7 / 40 ↠

What are type systems good for?

Detecting some programming errors

Abstraction: modules, interfaces, parametricity. . .

Documentation

Safety, but not necessarily (ML, Java, Lips: yes; C, C++:
no)

Efficient compilation!

Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation (#3) (CAP+MIF08)): typing 2024-2025 ↞ 8 / 40 ↠

Slogan

well typed programs cannot go wrong

Milner, "A Theory of Type Polymorphism in Programming", 1978

(For some definition of “well-typed” and “go wrong”...)

Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation (#3) (CAP+MIF08)): typing 2024-2025 ↞ 9 / 40 ↠

Slogan

well typed programs cannot go wrong

Milner, "A Theory of Type Polymorphism in Programming", 1978

(For some definition of “well-typed” and “go wrong”...)

Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation (#3) (CAP+MIF08)): typing 2024-2025 ↞ 9 / 40 ↠

Generalities about typing

1 Generalities about typing

2 Imperative languages (C, Mini-While)

3 Type Safety

Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation (#3) (CAP+MIF08)): typing 2024-2025 ↞ 10 / 40 ↠

Generalities about typing

Typing objectives

Should be decidable.

It should reject programs like (1 2) in OCaml, or
1.0+"toto" in C before an actual error in the evaluation of
the expression: this is safety.
The type system is related to the kind of error to be detected:

operations on basic types / method invocation (message not

understood) / correct synchronisation (e.g. session types) in

concurrent programs / ...

The type system should be expressive enough and not
reject too many programs. (expressivity)

Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation (#3) (CAP+MIF08)): typing 2024-2025 ↞ 11 / 40 ↠

Generalities about typing

Rough principle

We type recursively the
sub-expressions.

Assign← Stmt

int→ Identifier
(x)

Multiply← float

float→ FloatLiteral
(2.5)

Plus← float

int→ Identifier
(y)

IntLiteral← float
(1)What does the programmer write?

The type of all sub-expressions (like above) easy to verify, but
tedious for the programmer
Annotate only variable declarations (Pascal, C, Java, . . .)
{int x, y; x = 2.5 * (y + 1);}

Only annotate function parameters (Scala)
def foo(y : Int) { var x = 2.5 * (y + 1) }

Annotate nothing, rely on inference : OCaml, Haskell, . . .
let foo y = 2 * (y + 1);;

val foo : int -> int = <fun>

Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation (#3) (CAP+MIF08)): typing 2024-2025 ↞ 12 / 40 ↠

Generalities about typing

Typing algorithm
Note that we distinguish:

the typing algorithm, an effective process that takes as
output a possibly partially annotated program and either
reject it, or outputs its type.

the typing system, a specification of the well-typed
programs

The former should be well-behaved w.r.t. the latter, i.e.,:

Correctness: accepts only well-typed programs.

Completeness: accepts any well-typed program.

In presence of polymorphism, we are also often concerns with:

principality : The most general type is computed.

Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation (#3) (CAP+MIF08)): typing 2024-2025 ↞ 13 / 40 ↠

Generalities about typing

Typing judgement

We will define how to compute typing judgements denoted by:

Γ ⊢ e : τ

stating that “in the environment Γ, expression e has type τ ”

▶ Γ associates a type to the variables in scope.

{

int x = 42, y;

float z;

}

;

{

x → int,

y → int,

z → float

}

Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation (#3) (CAP+MIF08)): typing 2024-2025 ↞ 14 / 40 ↠

Generalities about typing

Type safety, i.e., well typed programs cannot go wrong

In general a type safety theorem has the following flavor:

Theorem (Safety)
If ∅ ⊢ e : τ , then the reduction of e is infinite, or it terminates in a
valid final configuration.

Of course, the notions of valid final configuration are
language-dependent. For a calculus, it would be a value. In our
mini-while it is a final configuration (skip, σ).
What the theorem really captures is: there will be no runtime
error—a notion, once again, that depends on your semantics.

Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation (#3) (CAP+MIF08)): typing 2024-2025 ↞ 15 / 40 ↠

Generalities about typing

Type Safety: proof methodology

The standard proof methodology is based on two lemmas:

Lemme (Progress)
If ∅ ⊢ e : τ , then either e is final or there exists e′ such that
e→ e′.

Lemme (Preservation)
If ∅ ⊢ e : τ and e→ e′ then ∅ ⊢ e′ : τ .

Together, these lemmas implies immediately type safety.

Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation (#3) (CAP+MIF08)): typing 2024-2025 ↞ 16 / 40 ↠

Generalities about typing

A relatively recent recipe

Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation (#3) (CAP+MIF08)): typing 2024-2025 ↞ 17 / 40 ↠

Imperative languages (C, Mini-While)

1 Generalities about typing

2 Imperative languages (C, Mini-While)
Simple Type Checking for Mini-While
Other typing features

3 Type Safety

Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation (#3) (CAP+MIF08)): typing 2024-2025 ↞ 18 / 40 ↠

Imperative languages (C, Mini-While) Simple Type Checking for Mini-While

2 Imperative languages (C, Mini-While)
Simple Type Checking for Mini-While
Other typing features

Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation (#3) (CAP+MIF08)): typing 2024-2025 ↞ 19 / 40 ↠

Imperative languages (C, Mini-While) Simple Type Checking for Mini-While

Typing acts upon the abstract syntax
Expressions:

e ::= c constant
| x variable
| e+ e addition
| e < e boolean expressions
| ...

Mini-while:

S(Smt) ::= x := expr assign
| skip do nothing
| S1;S2 sequence
| if b then S1 else S2 test
| while b do S done loop

Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation (#3) (CAP+MIF08)): typing 2024-2025 ↞ 20 / 40 ↠

Imperative languages (C, Mini-While) Simple Type Checking for Mini-While

Typing rules for expr

Only two ground types: int | bool

Γ ⊢ x : Γ(x)

n ∈ Z

Γ ⊢ n : int
(or tt: bool, . . .)

Γ ⊢ e1 : int Γ ⊢ e2 : int

Γ ⊢ e1 + e2 : int

Γ ⊢ e1 : int Γ ⊢ e2 : int

Γ ⊢ e1 < e2 : bool

Γ ⊢ e1 : τ Γ ⊢ e2 : τ

Γ ⊢ e1 = e2 : bool
...

Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation (#3) (CAP+MIF08)): typing 2024-2025 ↞ 21 / 40 ↠

Imperative languages (C, Mini-While) Simple Type Checking for Mini-While

Typing rules for statements: Γ ⊢ S

A statement S is well-typed (there is no type for statements).
on board!

Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation (#3) (CAP+MIF08)): typing 2024-2025 ↞ 22 / 40 ↠

Imperative languages (C, Mini-While) Simple Type Checking for Mini-While

Typing: an example

Considering Γ = [x 7→ int], prove that the given sequence of
instructions is well typed:

x = 3 ;

x = x + 9 ;

Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation (#3) (CAP+MIF08)): typing 2024-2025 ↞ 23 / 40 ↠

Imperative languages (C, Mini-While) Simple Type Checking for Mini-While

Problem: how to define Γ in mini-while?

Possible solution: programs declare variables.

P ::= D;S program
D ::= var x : τ | D;D Variable declaration

We can then simply define ΓD ≜ x 7→ τ iff x : τ ∈ D.
And type programs as:

ΓD ⊢ S

∅ ⊢ D;S

Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation (#3) (CAP+MIF08)): typing 2024-2025 ↞ 24 / 40 ↠

Imperative languages (C, Mini-While) Simple Type Checking for Mini-While

Typing judgement for runtime configuration

The semantics of Mini-While does not operate on programs, but
on configurations, i.e., programs paired with a store.1

In order to reason on types at runtime, for instance for
preservation, we hence need to extend the typing judgement to
these runtime configurations:

Definition (Configuration typing)
Γ ⊢ (S, σ) ⇐⇒ (Γ ⊢ S ∧ ∀x. ∅ ⊢ σ(x) : τ ⇐⇒ Γ(x) = τ)

That is to say, the typing environment is a correct abstraction of
the runtime store.

1Remark that semantics based on substitution do not have need for this
notion

Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation (#3) (CAP+MIF08)): typing 2024-2025 ↞ 25 / 40 ↠

Imperative languages (C, Mini-While) Other typing features

2 Imperative languages (C, Mini-While)
Simple Type Checking for Mini-While
Other typing features

Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation (#3) (CAP+MIF08)): typing 2024-2025 ↞ 26 / 40 ↠

Imperative languages (C, Mini-While) Other typing features

Coercions

Assuming we extend our language with floats, what should we
do with 1.2 + 42 ?

reject?

compute a float!

▶ This is a case of type coercion.

▶ It requires a very local form of type inference.

Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation (#3) (CAP+MIF08)): typing 2024-2025 ↞ 27 / 40 ↠

Imperative languages (C, Mini-While) Other typing features

Structural vs nominative type systems

In presence of user defined datatype, how should we compare
for the compatibility of types?

typedef struct { typedef struct {

int data[100]; int data[100];

int count; int count;

} Stack; } Set;

▶ Structural discipline: Stack and Set are compatible.

▶ Nominative discipline: they are not.

Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation (#3) (CAP+MIF08)): typing 2024-2025 ↞ 28 / 40 ↠

Imperative languages (C, Mini-While) Other typing features

Subtyping: heavily used in OOP notably
A type can be more precise than another one, e.g.

int <: num

The subtyping relation can be used to weaken typing:

e : τ τ <: τ ′

e : τ ′

The subtyping relation can be tricky:

τ <: τ ′

List[τ] <: List[τ ′]
Covariance

τ <: τ ′

τ ′ → unit <: τ → unit
Contravariance

Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation (#3) (CAP+MIF08)): typing 2024-2025 ↞ 29 / 40 ↠

Type Safety

1 Generalities about typing

2 Imperative languages (C, Mini-While)

3 Type Safety

Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation (#3) (CAP+MIF08)): typing 2024-2025 ↞ 30 / 40 ↠

Type Safety

The case of expressions

Theorem (Safety)
Suppose ∀x ∈ vars(e). ∅ ⊢ σ(x) : τ ⇐⇒ Γ(x) = τ

Then Γ ⊢ e : τ =⇒ ∅ ⊢ V al(e, σ) : τ

Prove it!

Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation (#3) (CAP+MIF08)): typing 2024-2025 ↞ 31 / 40 ↠

Type Safety

Typing judgment for Mini While: reminder

∅ ⊢ (D,P) : τ if ΓD ⊢ P : τ

D →d Γ Γ ⊢ S

∅ ⊢ D;S

Γ ⊢ e1 : int Γ ⊢ e2 : int

Γ ⊢ e1 + e2 : int
Γ ⊢ x : Γ(x)

c ∈ Z

c : int

b ∈ B

c : bool

Γ ⊢ S1 Γ ⊢ S2

Γ ⊢ S1;S2

Γ ⊢ x : τ Γ ⊢ e : τ

Γ ⊢ x := e

Γ ⊢ e : bool Γ ⊢ S1 Γ ⊢ S2

Γ ⊢ if e then S1 else S2

Γ ⊢ e : bool Γ ⊢ S

Γ ⊢ while e do S done

Typing configurations:
Γ ⊢ (S, σ) ⇐⇒ (Γ ⊢ S ∧ ∀x. ∅ ⊢ σ(x) : τ ⇐⇒ Γ(x) = τ)

Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation (#3) (CAP+MIF08)): typing 2024-2025 ↞ 32 / 40 ↠

Type Safety

Safety = well typed programs do not go wrong

In case of a small-step semantics the proof that “well typed programs
do not go wrong” relies on two lemmas:
Well-type programs run without error

Lemma (Progress)
If Γ ⊢ (S, σ), then there exists S′, σ′ such that (S, σ)→ (S′, σ′)

OR S = skip.

... and remain well-typed

Lemma (Preservation, a.k.a. subject reduction)
If Γ ⊢ (S, σ) and (S, σ)→ (S′, σ′) then Γ ⊢ (S′, σ′).

Note that Γ never changes (defined by declarations)

Proofs! (recall the property for expression evaluation)

Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation (#3) (CAP+MIF08)): typing 2024-2025 ↞ 33 / 40 ↠

Type Safety

Initial Configuration

Remark: we need to initialize the store in a way that is
compatible with the typing environment.
Two basic solutions:

Enforce declarations to come with initialization or

Define a default value for each type.

Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation (#3) (CAP+MIF08)): typing 2024-2025 ↞ 34 / 40 ↠

Type Safety

Conclusion 1/2

We have seen:

The principle of static typing

A type system for mini-while

Type safety and how to prove it for mini while

Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation (#3) (CAP+MIF08)): typing 2024-2025 ↞ 35 / 40 ↠

Type Safety

Conclusion 2/2

Further discussions not covered here:

Typing functions (later in the course)

More complex (i.e. real life) type system: sub-typing,
objects, polymorphisms, modules, type classes...

There exist very rich type systems , e.g. session types,
linear types, ownership types, liquid types ...
It is an old but still very active and exciting area of
research!

Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation (#3) (CAP+MIF08)): typing 2024-2025 ↞ 36 / 40 ↠

Type Safety

But what about unsafe features?

Static typing are great! My favorite language is strongly,
statically typed, and of course type safe!

OCaml: Obj.magic

Haskell: unsafePerformIO, etc. . .

Rust: unsafe blocks

But I only used these features carefully in some well crafted
library code! So surely my language is still type safe?
Well yes, but syntactic type safety is of no help to make sure of
that.

Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation (#3) (CAP+MIF08)): typing 2024-2025 ↞ 37 / 40 ↠

Type Safety

But what about unsafe features?

Static typing are great! My favorite language is strongly,
statically typed, and of course type safe!

OCaml: Obj.magic

Haskell: unsafePerformIO, etc. . .

Rust: unsafe blocks

But I only used these features carefully in some well crafted
library code! So surely my language is still type safe?
Well yes, but syntactic type safety is of no help to make sure of
that.

Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation (#3) (CAP+MIF08)): typing 2024-2025 ↞ 37 / 40 ↠

Type Safety

But what about unsafe features?

Static typing are great! My favorite language is strongly,
statically typed, and of course type safe!

OCaml: Obj.magic

Haskell: unsafePerformIO, etc. . .

Rust: unsafe blocks

But I only used these features carefully in some well crafted
library code! So surely my language is still type safe?
Well yes, but syntactic type safety is of no help to make sure of
that.

Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation (#3) (CAP+MIF08)): typing 2024-2025 ↞ 37 / 40 ↠

Type Safety

Semantic Typing

How did we do before 1994?

Syntactic typing Γ ⊢ t : τ

Semantic Γ ⊨ t : τ

We capture terms that are syntactically ill-formed, but behave
safely: "t behaves safely when used at type τ ".

Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation (#3) (CAP+MIF08)): typing 2024-2025 ↞ 38 / 40 ↠

Type Safety

Semantic Typing

Γ ⊨ t : τ

Adequacy: if ∅ ⊨ t : τ then t is safe

Compatibility: ⊨ is compatible with the syntactic typing
rules

We capture terms that are syntactically ill-formed, but behave
safely: "t behaves safely when used at type τ ".
In particular, Γ ⊢ t : τ ⇒ Γ ⊨ t : τ

Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation (#3) (CAP+MIF08)): typing 2024-2025 ↞ 39 / 40 ↠

Type Safety

Application: the RustBelt project

See Derek Dreyer’s Milner Award Lecture

Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation (#3) (CAP+MIF08)): typing 2024-2025 ↞ 40 / 40 ↠

https://www.youtube.com/watch?v=8Xyk_dGcAwk

	Generalities about typing
	Imperative languages (C, Mini-While)
	Type Safety

