Compilation (#6b) : SSA for Fun and Optimisations

Gabriel Radanne

Master 1, ENS de Lyon et Dpt Info, Lyon1

2024-2025

Our compiler so far

- Parsing and Typing
- Use of clever™ intermediate representations: CFG and SSA
- Register allocation and code emission

Today, we optimize!

1 [Optimisations in SSA](#page-2-0)

- **•** [Sparse analysis](#page-11-0)
- [Control dependencies](#page-22-0)
- [A glimpse at loop optimisations](#page-30-0)

Redundancy – Source of Optimization

Why are there redundancy in programs?

Programmer's convenience:

$$
foo(x,y,z) = x * y + z
$$

...
c = foo(a,1,b); // a + b
d = a + b

Higher level constructs:

$$
x = a[i]; // x = *(a + i * 4)
$$

...
 $a[i] = y // *(a + i * 4) = y$

Simple dead code elimination

Dead code elimination: remove code that is never executed

 $a = 4$; $b = 10$; ... $c = 2$. \mapsto ... $c = 2:$

Property

A variable is live at its definition if and only if its list of uses is not empty.

True in SSA because each variable has a single definition!

▶ A variable is **dead** if it has no uses.

Simple dead code elimination

while there is some variable v with no uses

and the statement S that defines v has no other side effects do:

delete S

What happens when we delete an instruction?

How to implement this?

Simple dead code elimination

while there is some variable v with no uses

and the statement S that defines v has no other side effects do:

delete S

What happens when we delete an instruction?

How to implement this?

 \triangleright Maintain a worklist containing the variables to look at. Loop until it's empty.

A running example

 $i \leftarrow 1$ $j \leftarrow l$ $k \leftarrow 0$ while $k < 100$ if $j < 20$ $i \leftarrow i$ $k \leftarrow k + 1$ else $j \leftarrow k$ $k \leftarrow k + 2$ return j

SSA

Simple constant propagation

We can propagate constants of single definitions:

- **1** if $v \leftarrow c$, we can replace any use of v by c
- 2 if $v \leftarrow \phi(c, c, c)$, we can replace it by $v \leftarrow c$

 \blacktriangleright Again, using a worklist algorithm

The worklist algorithm

```
W = list of all statements in the SSA program
while W \neq \emptyset:
 pop statement S \in Wif S is v \leftarrow \phi(c, \ldots, c):
   replace S by v \leftarrow cif S is v \leftarrow c:
   delete S from the program
   for each statement T using v:
     substitute v by c in TW = W \cup \{T\}
```


Application of the worklist algorithm

This algorithm can be extended to also apply the following optimisations:

- **Copy propagation**: For each copy $x \leftarrow y$, replace x by y
- **Constant folding**: For each operation $x \leftarrow c_0 + c_1$, replaces $c_0 + c_1$ by its result
- **Constant conditions**: If the result of a jump is known, replace it by an absolute jump
- **Unreachable code**: If a block can't be accessed, remove it

 \bullet ...

1 [Optimisations in SSA](#page-2-0)

- **•** [Sparse analysis](#page-11-0)
- [Control dependencies](#page-22-0)
- [A glimpse at loop optimisations](#page-30-0)

What is the value of j ? Consider two cases:

- if $i = 1$ always
- if sometimes $i > 20$
- \blacktriangleright We need a more subtle analysis

We want to keep track of values precisely! We denote $V[v]$ the value of v at a program point

- $\triangleright \mathcal{V}[v] = \bot$ if we have no evidence that v is assigned
- $V[v] = 4$ if we found evidence that v is assigned to 4
- $\triangleright \mathcal{V}[v] = \top$ if we have found evidence that v is assigned to at least two different values
- ▶ This forms a **lattice**.

We also want to keep track of executability:

- \bullet $\mathcal{E}[B] = false$ if we have no evidence that B can ever be executed
- \bullet $\mathcal{E}[B] = true$ if we have evidence that B can be executed

Is computing V and E decidable?

We will compute an over-approximation. Let's try on a simpler non-SSA example. How would you quantify the space required (in term of variables and statements)? Could we do better?

Let's try on the SSA version now.

Let's try on the SSA version now.

We can store V only once for each variable! This is a **sparse** analysis.

Sparse Conditional Constant Propagation – back to the big example

Compute $\mathcal V$ and $\mathcal E$

Sparse Conditional Constant Propagation – back to the big example

Compute $\mathcal V$ and $\mathcal E$

Sparse Conditional Constant Propagation – back to the big example

Compute $\mathcal V$ and $\mathcal E$

Abstract Interpretation

We computed V by walking through the program step by step. We did a "simplified" execution of the program

▶ This is called **Abstract Interpretation**, an essential tool for program analysis

1 [Optimisations in SSA](#page-2-0)

- **•** [Sparse analysis](#page-11-0)
- [Control dependencies](#page-22-0)
- [A glimpse at loop optimisations](#page-30-0)

Dead code?

What about dead code elimination here?

- k_2 is used by k_3
- k_3 is used by k_2

Our previous dead code analysis pass doesn't work here.

 \triangleright We need a new notion of dependency

Control dependencies

Control dependency

We say that block B is **control-dependent** on A if:

- \bullet from A We can branch to U and V
- A path $U \rightarrow e$ xit doesn't go through B
- All path $V \to \text{exit}$ go through B

Control dependency Graph

The Control Dependency Graph has an edge from A to B if B is control dependent on A

Control dependencies

Control dependency

We say that block B is **control-dependent** on A if:

- \bullet from A We can branch to U and V
- A path $U \rightarrow e$ xit doesn't go through B
- All path $V \rightarrow$ exit go through B

Control dependency Graph

The Control Dependency Graph has an edge from A to B if B is control dependent on A

Computed using **post-dominators**!

Control dependencies

Aggressive code elimination

We can use the control dependency graph to perform aggressive code elimination Similarly to the Conditional Constant Propagation, we assume a statement is dead until proven otherwise.

Aggressive code elimination – Algorithm

Mark live any statement which:

- **1** Performs side effects or returns
- 2 Defines a variable used in a live statement
- ³ Is a conditional branch upon which a statement is control-dependent

Then delete all unmarked statements

Uses of control dependency

Control dependency can also be used for parallelization

 \triangleright If two statements are independent in the CDG, we can run them in parallel!

1 [Optimisations in SSA](#page-2-0)

- [Sparse analysis](#page-11-0)
- [Control dependencies](#page-22-0)
- [A glimpse at loop optimisations](#page-30-0)

How to optimize loops?

Loops are where most of computation time is spent.

 \blacktriangleright Crucial to optimize them well

But loops are also much harder to optimize correctly! Beware incorrect optimizations

Loop Invariant Code Motion

Extract instructions which are invariant of the loop variable

```
let a = ...:
let b = ...;
for (let i = 0; i < 100; ++i) {\mapstof(i, a * b):
}
                                       let a = ...:
                                       let b = ...;let c = a * b:
                                       for (let i = 0; i < 100; +i) {
                                          f(i, c):
                                       }
```
How to obtain that information using previously-seen analysis?

Loop Unswitching

Variant of Loop Invariant Code motion to exchange tests and loops:

```
for (i = 0; i < 100; ++i) {
   if (c) {
// Loop-invariant value.
      f();
   } else {
      g();
   }
}
                                  \mapstoif (c) {
                                           for (i = 0; i < 100; ++i) {
                                              f();
                                            }
                                        } else {
                                           for (i = 0; i < 100; ++i) {
                                               g();
                                           }
                                        }
```
Induction Variable Elimination

Induction Variable Elimination (also called "Strength reduction") replaces iteration variables by simpler expressions

$$
\begin{array}{ll}\n\text{for } (i = 0; i < 100; ++i) \{ \\
\text{a[i]} = 0; // * (a + i * s) &\n\end{array}\n\quad \begin{array}{ll}\n\text{let } a100 = a + 100 * s; \\
\text{for } (ai = a; ai < a100; ai += s) \{ \\
\text{*a_i = 0;}\n\end{array}
$$

▶ We identify a simpler form for the affine expression $A * i + B$ Applies particularly to arrays.

Loop interchange, fusion, fission, ...

Exchanging loops and cutting them into pieces

▶ Fit into a more general (and powerful) framework: the **Polyhedral Model!**

Where are the loops?

By the way: how do we actually find the loops?

▶ Not so simple to identify on a CFG!

Where are the loops?

By the way: how do we actually find the loops?

▶ Not so simple to identify on a CFG!

A loop has a single entry point and contain a cycle

- A **header** dominates all nodes in the loop
- A **back edge** is an edge $t \to h$ whose head h dominates its tail t .

A loop is the smallest set of nodes containing a back edge and whose only entry point is the header.

