
Lab 4
Control Flow Graph

Objective

• Understand the CFG construction and linearization.
• This is due on https://etudes.ens-lyon.fr (NO EMAIL PLEASE), before 2024-10-20 23:59. More

instructions in section 4.5.

4.1 Preliminaries

Student files are in the Git repository. We use the graphviz visualization tool, that you need to install if you did
not already do it for Lab 2.

sudo apt install graphviz
python3 -m pip install graphviz

Make sure your Git repository is up-to-date, using git pull. The local offline documentation has been up-
dated: try it by opening cap-lab24/docs/html/index.html in your favorite browser.

4.2 CFG construction

During class we presented Control Flow Graphs with maximal basic blocks. In this lab you will transform the
linear code produced during the previous lab into a CFG, using the algorithm seen during the course.

EXERCISE #1 Ï CFG By hand
What are the expected result of the CFG construction for the each of these programs?

Listing 4.1: df01.c

int n,u,v;
n=6;
u=12;
v=n+u;
print_int(v);

Listing 4.2: df04.c

int x;
x=2;
if (x < 4)
x=4;

else
x=5;

print_int(x)

Listing 4.3: df05.c

int x;
x=0;
while (x < 4){
x=x+1;

}

EXERCISE #2 Ï Finding the leaders
In the course on intermediate representations, we have defined the notion of basic blocks and leaders, which
designate the indices of the instructions starting a block. We define the find_leaders procedure as taking
the list of instructions and returning a list of leaders. The list of indices leaders should have the following
properties:

• leaders[i] is the starting instruction of the i th block.
• Each interval leaders[i] to leaders[i+1]-1 delimits the instructions of a block.
• We have leaders[0]=0 and leaders[-1]=len(instructions).

Compute the leaders by hand on the following example.

0 subi temp2, temp2, 4
1 beq temp2, zero, lelse1
2 li temp4, 7

Laure Gonnord, Matthieu Moy, Gabriel Radanne et al. 1/4

https://etudes.ens-lyon.fr

4.2. CFG CONSTRUCTION LAB 4. CONTROL FLOW GRAPH

3 mv temp1, temp4
4 jump lendif1
5 lelse1:
6 addi temp3, temp2, 1
7 mv temp1, temp3
8 lendif1:

EXERCISE #3 Ï Completing the CFG Construction (file TP04/BuildCFG.py)
The Lib.CFGmodule contains all the utilities related to Control Flow Graphs:

• the Block class, representing a basic block,
• the CFG class, representing a complete function in CFG form.

Additionally, the Lib.Terminatormodule contains definitons related to terminators, the final branching in-
structions of the blocks. Before writing any code, you should carefully read the documentation of these new
modules.

The construction of the CFG is split into several pieces, mainly in TP04/BuildCFG.py.
• The find_leaders function returns a list of all the leaders.
• The separate_with_leaders function breaks the code into pre-chunks according to the list of leaders.
• The prepare_chunk function takes a pre-chunk and extracts its initial label and last jump (if any) from

the other statements; it also check the rest of the statements are without any label or jump.
• The jump2terminator function converts the final jump of a chunk into a terminator.
• The rest of the build_cfg function uses the initial labels, inner instructions, and final jumps to build

the actual CFG blocks, and add edges between the blocks based on the terminators.
You have to complete the proceduresfind_leaders andprepare_chunks. The procedure find_leaders

is currently incomplete and always return the list [0,len(instructions)]. You can assume that for each la-
bel that appears in the list of instructions, there is an instruction somewhere that jumps to it; this makes the
code significantly simpler and just as correct.

In prepare_chunks, you have to replace the two raise NotImplementedError() by an extraction of the
first instruction if it is a label (otherwise, create a fresh label identifying this block with fdata.fresh_label)
and an extraction of the last instruction if it is a jump (otherwise do nothing).

Reminder: at any point, you can run make test-pyright to check your code for typing errors.
You can test your code by specifying the --mode codegen-cfg option to MiniCC.py. Furthermore, when

adding the option --graphs to MiniCC.py, the graph of the CFG will be printed as a PDF file <name>.dot.pdf
(using the tool “dot”), in the same directory as the source file <name>.c and opened automatically. You can try
it with:

python3 MiniCC.py --mode codegen-cfg --reg-alloc none --graphs /path/to/example.c

For example, the CFG for df02.c should look like:

Laure Gonnord, Matthieu Moy, Gabriel Radanne et al. 2/4

4.3. OPTIMIZED CFG LINEARIZATION LAB 4. CONTROL FLOW GRAPH

lbl_div_by_zero_0_main:
 la a0, lbl_div_by_zero_0_main_msg
 call println_string
 li a0, 1
 call exit
 return

lbl_end_relational_2_main:
 and temp_8, temp_7, temp_2
 mv a0, temp_8
 call println_int
 li a0, 0
 return

lbl_main_6_main:
 li temp_7, 1
 j lbl_end_relational_2_main

lbl_end_relational_1_main:
 mv temp_2, temp_5
 li temp_6, 1
 li temp_7, 0
 bge temp_6, temp_1, lbl_end_relational_2_main, lbl_main_6_main

lbl_main_5_main:
 li temp_5, 1
 j lbl_end_relational_1_main

lbl_main_4_main:
 li temp_0, 0
 li temp_1, 0
 li temp_2, 0
 li temp_3, 6
 mv temp_1, temp_3
 li temp_4, 12
 li temp_5, 0
 ble temp_4, temp_1, lbl_end_relational_1_main, lbl_main_5_main

The isolated block in this example corresponds to code related to division by zero. This particular block is
added independently from code generation.

EXERCISE #4 Ï Check and test your CFGs

Check examples with:
1. Straight code (for instance TP04/tests/provided/dataflow/df01.c)
2. Boolean expressions, tests and if statements
3. While loops
4. Your own tests
If available, use --reg-alloc all-in-mem to obtain executable code from the CFG.
Note that register allocation does not affect the CFG printed by --graphs, as it is output before register

allocation. In the rest of the lab, your compiler will do the allocation on the CFG, and all the tests from the
previous lab should still pass.

To run the test suite with the CFG, you can run make test-lab4 MODE=codegen-cfg. This will run all
tests in CFG mode with both the naive and all-in-memory allocators.

If you get errors with the all-in-mem allocator but not with the naïve one, you probably overlooked some-
thing in the implementation during lab 4a, and we invite you to triple-check the subject. In particular, check
that you did not add useless ld or sd instructions.

4.3 Optimized CFG linearization

EXERCISE #5 Ï CFG Linearization
Before emitting instructions, a control flow graph needs to be linearized, i.e., turned back into a linear se-
quence of instructions. This is done in the LinearizeCFG.py file by the linearize function.

Laure Gonnord, Matthieu Moy, Gabriel Radanne et al. 3/4

4.4. EXTENSION LAB 4. CONTROL FLOW GRAPH

The current method is not very efficient: it emits jump instructions at the end of each block to link to the
next block, even if it is immediately next. This results in the assembly instructions on the left below, even
though the instructions on the right are sufficient (and more efficient). Furthermore, the current implementa-
tion doesn’t try to re-order the block to minimize the number of jumps. This will be particularly problematic
after the next lab on SSA form, which will add new blocks to our CFG.

Listing 4.4: Code with extra jump

1 lbl_end_relational_3_main: ld s1, -
144(fp) beq s1, zero,

2 lbl_end_while_2_main j lbl_main_6_main
lbl_main_6_main: li s2, 1

3 sd s2, -152(fp) ...

Listing 4.5: Code without extra jump

1 lbl_end_relational_3_main: ld s1, -
144(fp) beq s1, zero,

2 lbl_end_while_2_main lbl_main_6_main
: li s2, 1 sd s2, -152(fp)

3 ...

1. Inspect the assembly of simple programs after CFG linearization. Try to linearize them by hand to mini-
mize the number of jumps.

2. Improve the linearize function in TP04/LinearizeCFG.py to avoid jumps to blocks that are immedi-
ately following.

4.4 Extension

EXERCISE #6 Ï Block reordering
How would you choose a better order to linearize the blocks? Explain your reasoning in the readme file, and
try to implement it in the function LinearizeCFG.ordered_blocks_list.

4.5 Delivery

EXERCISE #7 Ï Readme
Complete the README-codegen.md from lab 4a with any relevant information about your lab 4b.

EXERCISE #8 Ï Archive
Labs 4a and 4b (working together) are due on the course’s webpage

https://etudes.ens-lyon.fr/

To get a perfect grade for lab 4, you need to implement everything perfectly, plus a syntax extension
from lab 4a or the block reordering extension from lab 4b.

Type make tar in the MiniC folder to obtain the archive MYNAME.tgz to send (change your name in the
Makefile before!). Your archive must also contain your tests (TESTS!) in the TP04/tests/students folder,
with complete coverage of the code in TP04/. We expect tests with clear and explicit names that are relevant
for what we implemented in lab 4. The command make test-lab4 MODE=codegen-cfgmust work with your
implementation; if some of the tests you have fail, please report the corresponding bugs in your readme.

Laure Gonnord, Matthieu Moy, Gabriel Radanne et al. 4/4

https://etudes.ens-lyon.fr/

	Control Flow Graph
	Preliminaries
	CFG construction
	Optimized CFG linearization
	Extension
	Delivery

