
 1

Setting the Stage:
on the Mechanized Verification of a Compiler

Yannick Zakowski

Compilation and Program Analysis (#11)

2024/2025

Introduction

Or How I Learned to Stop Worrying…

3

In 1956, Nikita Khrushchev is addressing western diplomats in Moscow:

Or How I Learned to Stop Worrying…

3

In 1956, Nikita Khrushchev is addressing western diplomats in Moscow:
“We will bury you”

Or How I Learned to Stop Worrying…

3

In 1956, Nikita Khrushchev is addressing western diplomats in Moscow:

It appears that the original Russian sentence something closer to
“We shall outlive you”

“We will bury you”

Or How I Learned to Stop Worrying…

3

In 1956, Nikita Khrushchev is addressing western diplomats in Moscow:

Khrushchev had a buggy translator!

It appears that the original Russian sentence something closer to
“We shall outlive you”

“We will bury you”

Traduttore, traditore¹

4
¹ The use of this quote in this context is stolen from Xavier Leroy’s excellent course at Collège de France. It’s available online!

A nightmare scenario…

Traduttore, traditore¹

4

Our algorithm satisfies the specification

¹ The use of this quote in this context is stolen from Xavier Leroy’s excellent course at Collège de France. It’s available online!

A nightmare scenario…

Traduttore, traditore¹

4

Our algorithm satisfies the specification

Better! Our implementation satisfies the specification

¹ The use of this quote in this context is stolen from Xavier Leroy’s excellent course at Collège de France. It’s available online!

A nightmare scenario…

Traduttore, traditore¹

4

Our algorithm satisfies the specification

Better! Our implementation satisfies the specification

But the compiler has changed the meaning of my program

¹ The use of this quote in this context is stolen from Xavier Leroy’s excellent course at Collège de France. It’s available online!

A nightmare scenario…

Traduttore, traditore¹

4

Our algorithm satisfies the specification

Better! Our implementation satisfies the specification

But the compiler has changed the meaning of my program

The executable code does not satisfy the specification

¹ The use of this quote in this context is stolen from Xavier Leroy’s excellent course at Collège de France. It’s available online!

A nightmare scenario…

Traduttore, traditore¹

4

Our algorithm satisfies the specification

Better! Our implementation satisfies the specification

But the compiler has changed the meaning of my program

The executable code does not satisfy the specification

Natural languages are hard. But when it comes to programming
languages, can we guarantee that our translators won’t betray us?

¹ The use of this quote in this context is stolen from Xavier Leroy’s excellent course at Collège de France. It’s available online!

A nightmare scenario…

Add Some Tests?

5

output

A compiler is a program, and we want it to behave:
can’t we just test them?

gcc
llvm

ghc

Note: gcc is composed of roughly 15 millions line of codes…

Add Some Tests?

5

input output

A compiler is a program, and we want it to behave:
can’t we just test them?

gcc
llvm

ghc

Note: gcc is composed of roughly 15 millions line of codes…

Add Some Tests?

5

input output

A compiler is a program, and we want it to behave:
can’t we just test them?

Valid C program
fit to stress test your compiler

How to generate inputs? gcc
llvm

ghc

Note: gcc is composed of roughly 15 millions line of codes…

Add Some Tests?

5

input output

A compiler is a program, and we want it to behave:
can’t we just test them?

Valid C program
fit to stress test your compiler

How to generate inputs? gcc
llvm

ghc

Note: gcc is composed of roughly 15 millions line of codes…

Add Some Tests?

5

input output

A compiler is a program, and we want it to behave:
can’t we just test them?

Valid C program
fit to stress test your compiler

How to generate inputs? gcc
llvm

ghc
Comment valider?

Some x86 assembly

Note: gcc is composed of roughly 15 millions line of codes…

Add Some Tests?

5

input output

A compiler is a program, and we want it to behave:
can’t we just test them?

Valid C program
fit to stress test your compiler

How to generate inputs? gcc
llvm

ghc
Comment valider?

Some x86 assembly

Note: gcc is composed of roughly 15 millions line of codes…

Simplest solution: differential testing. Have your compilers argue!

It’s hard work, but it can be done!

6

1. Write a C program random generator (CSmith)
2. Have several (>= 3) C compilers run the programs and vote on the result

But C is no ML: a syntactically correct program is likely no C!
Undefined behaviours: null pointer dereference, array access out-of-bound, etc…

Your random generator must be paired with complex static analyses

It’s hard work, but it’s worth it!

7

“Every compiler we tested was found to crash
and also to silently generate wrong code when presented with valid input.”

It’s hard work, but it’s worth it!

7

“Every compiler we tested was found to crash
and also to silently generate wrong code when presented with valid input.”

“The striking thing about our CompCert results is that
 the middle-end bugs we found in all other compilers are absent.”

Here enters the hero of our story: the verified compiler

Pre-history

8

Pre-history

8

Pre-history

8

Pre-history

9

1972

Pre-history

9

1972

Pre-history

9

1972

Pre-history

9

1972

Turned 90 Yesterday!

1976’s Turing Prize (with
Rabin)

CompCert (2009-) : a Verified C99 Optimising Compiler

10

If CompCert successfully compiles a C source program p
down to a PowerPC assembly program asm,

then « asm and p behave the same »

CompCert in production : safer code?

11

CompCert is commercialized by AbsInt and known to be used internally by:
•Airbus (avionic)
•MTU Friedrichshafen (civil nuclear energy)
•TUM (avionic)

CompCert in production : safer code?

11

CompCert is commercialized by AbsInt and known to be used internally by:
•Airbus (avionic)
•MTU Friedrichshafen (civil nuclear energy)
•TUM (avionic)

Why does CompCert interest so much these industries?

CompCert in production : safer code?

11

CompCert is commercialized by AbsInt and known to be used internally by:
•Airbus (avionic)
•MTU Friedrichshafen (civil nuclear energy)
•TUM (avionic)

Why does CompCert interest so much these industries?

Paradoxically, not so much to increase trust than to improve performances!

“With CompCert it is possible to decrease the execution time
of our flight control algorithms by a significant amount” (TUM)

The standards for certification are extremely stricts for such fields:
optimisations were usually completely ruled out!

Verified Compilation

12

Verified
compiler

Source
language

ℒ1

p compile(p)

⟦ compile(p) ⟧⟦ p ⟧

Target
language

ℒ2

Verified Compilation

12

Verified
compiler

Source
language

ℒ1

p compile(p)

⟦ compile(p) ⟧⟦ p ⟧

Target
language

ℒ2

“correct”

Verified Compilation

12

Verified
compiler

Source
language

ℒ1

p compile(p)

⟦ compile(p) ⟧⟦ p ⟧

Target
language

ℒ2

“correct” ?

Verified Compilation

12

Verified
compiler

⊑
“Refinement of

behaviors”

Source
language

ℒ1

p compile(p)

⟦ compile(p) ⟧⟦ p ⟧

Target
language

ℒ2

“correct” ?

Verified Compilation

12

Verified
compiler

⊑
“Refinement of

behaviors”

Source
language

ℒ1

p compile(p)

⟦ compile(p) ⟧⟦ p ⟧

Target
language

ℒ2

“correct” “correct”

Verified Compilation

12

Verified
compiler

⊑
“Refinement of

behaviors”

Source
language

ℒ1

p compile(p)

⟦ compile(p) ⟧⟦ p ⟧

Target
language

ℒ2

“correct” “correct”

The compiler is written and formally proved correct in a Proof Assistant

Verified Compilation

13

Verified
compiler

⊑
“Refinement of

behaviors”

Source
language

ℒ1

p compile(p)

⟦ compile(p) ⟧⟦ p ⟧

Target
language

ℒ2

Verified Compilation

13

Verified
compiler

⊑
“Refinement of

behaviors”

Source
language

ℒ1

p compile(p)

⟦ compile(p) ⟧⟦ p ⟧

Target
language

ℒ2

New languages, new constructions

Verified Compilation

13

Verified
compiler

⊑
“Refinement of

behaviors”

Source
language

ℒ1

p compile(p)

⟦ compile(p) ⟧⟦ p ⟧

Target
language

ℒ2

New languages, new constructions

Supporting better/more optimizations

Verified Compilation

13

Verified
compiler

⊑
“Refinement of

behaviors”

Source
language

ℒ1

p compile(p)

⟦ compile(p) ⟧⟦ p ⟧

Target
language

ℒ2

New languages, new constructions

Supporting better/more optimizations

New semantics and proof techniques

Verified Compilation

13

Verified
compiler

⊑
“Refinement of

behaviors”

Source
language

ℒ1

p compile(p)

⟦ compile(p) ⟧⟦ p ⟧

Target
language

ℒ2

New languages, new constructions

Supporting better/more optimizations

New semantics and proof techniques

Stronger results (security, …)

Verified Compilation

13

Verified
compiler

⊑
“Refinement of

behaviors”

Source
language

ℒ1

p compile(p)

⟦ compile(p) ⟧⟦ p ⟧

Target
language

ℒ2

New languages, new constructions New semantics and proof techniques

A modular, compositional, and executable semantics for LLVM IR

LLVM Compiler Infrastructure

optimizations/
transformations

typed SSA IR

analysis

[Lattner et al.]

14

LLVM

front
ends

code
gen/jit

The LLVM IR

15

LLVM Reference Manual
table of contents

The LLVM IR

15

LLVM Reference Manual
table of contents

The Vellvm Project

16

optimizations/
transformations

VIR

analysis

Vellvm

Project in collaboration with the
University of Pennsylvania

G ↦

Operational style

Monadic, denotational

The Vellvm Project

16

optimizations/
transformations

VIR

analysis

Vellvm

Project in collaboration with the
University of Pennsylvania

G ⊢ pc, mem → pc′ , mem′

G ↦

Operational style

Monadic, denotational

The Vellvm Project

16

optimizations/
transformations

VIR

analysis

Vellvm

Project in collaboration with the
University of Pennsylvania

G ⊢ pc, mem → pc′ , mem′

G ↦

Operational style

Monadic, denotational

(Operational) Semantics of an Imperative Language

Moving to the black board

