
Compilation and Program Analysis (#10) : Functions:
semantics

Yannick Zakowski1

Master 1, ENS de Lyon et Dpt Info, Lyon1

2024-2025

1Slides borrowed from Ludovic Henrio

Functions: typing

1 Functions: typing

2 Operational Semantics for functions

3 Safety of the type-system

Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation and Program Analysis (#10): functions 2024-2025 ↞ 2 / 44 ↠

Functions: typing

Mini-While Syntax 1/2

Expressions:
e ::= c | e+ e | e× e | ...

Mini-while:

S(Smt) ::= x := expr assign
| x := f(e1, .., en) simple function call
| skip do nothing
| S1;S2 sequence
| if b then S1 else S2 test
| while b do S done loop

Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation and Program Analysis (#10): functions 2024-2025 ↞ 3 / 44 ↠

Functions: typing

Mini-While Syntax 2/2

[NEW] Programs with function definitions and global variables

Prog ::= D FunDef Body Program
Body ::= D;S Function/main body

D ::= var x : τ |D;D Variable declaration
FunDef ::= τ f(x1 : τ1, .., xn : τn) Body; return e

| FunDef FunDef Function def

Note/discussion: to simplify syntax and semantics:
1) function call is not an expression but a special statement.
2) return only appears at the end of the function definition (enforced by syntax).

Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation and Program Analysis (#10): functions 2024-2025 ↞ 4 / 44 ↠

Functions: typing

OLD Type System (1/2)

From a declaration, we construct a typing context Γ : V ar → Basetype with the two
following rules:

var x : t →d [x 7→ t]

D1 →d Γ1 D2 →d Γ2 Dom(Γ1) ∩Dom(Γ2) = ∅
D1;D2 →d Γ1 ∪ Γ2

Then a typing judgment for expressions is Γ ⊢ e : τ ∈ Basetype. Statements have
no type.

Γ ⊢ e1 : int Γ ⊢ e2 : int

Γ ⊢ e1 + e2 : int

Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation and Program Analysis (#10): functions 2024-2025 ↞ 5 / 44 ↠

Functions: typing

OLD Type System (2/2)

Γ ⊢ x : Γ(x)

Γ ⊢ S1 Γ ⊢ S2

Γ ⊢ S1;S2

D →d Γ Γ ⊢ S

∅ ⊢ D;S

Γ ⊢ x : τ Γ ⊢ e : τ

Γ ⊢ x := e

Γ ⊢ b : bool Γ ⊢ S1 Γ ⊢ S2

Γ ⊢ if b then S1 else S2

Γ ⊢ b : bool Γ ⊢ S

Γ ⊢ while b do S done

Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation and Program Analysis (#10): functions 2024-2025 ↞ 6 / 44 ↠

Functions: typing

Function table (types)

First we extract the list of function signatures:

τf(x1 : τ1, .., xn : τn) Body; return e →f [f 7→ (τ1, .., τn → τ)]

Fundef 1 →f Γ1 Fundef 2 →f Γ2 Dom(Γ1) ∩Dom(Γ2) = ∅
Fundef 1 Fundef 2 →f Γ1 ∪ Γ2

Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation and Program Analysis (#10): functions 2024-2025 ↞ 7 / 44 ↠

Functions: typing

Type judgements and typing program

Typing of statements has now the form : Γ,Γf ⊢ S

Where Γ: map that defines the variable types, Γf : function map, S statement. To
type a program we type all function bodies:

D →d Γg Fundef →f Γf

Dm →d Γm Γg + Γm,Γf ⊢ S

∀ (τ f(x1 : τ1, .., xn : τn) Df ;Sf ; return e) ∈ Fundef ,

Γg + Γl ⊢ e : τ Γg + Γl,Γf ⊢ Sf where x1 : τ1; ..;xn : τn;Df →d Γl

⊢ D Fundef (Dm;S)

Note: in Γg + Γl, bindings in Γg are shadowed by ones in Γl, i.e. (Γg + Γl)(x) is
Γl(x) if x ∈ dom(Γl).

Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation and Program Analysis (#10): functions 2024-2025 ↞ 8 / 44 ↠

Functions: typing

Typing function call

CALL

Γf (f) = τ1, .., τn → τ ∀i ∈ [1..n].Γ ⊢ ei : τi Γ ⊢ x : τ

Γ,Γf ⊢ x := f(e1, .., en)

Typing rules for other statement are unchanged (except for the threading of the
additional Γf parameter)

Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation and Program Analysis (#10): functions 2024-2025 ↞ 9 / 44 ↠

Functions: typing

An example

bool x

int f(int x, bool b) {

int y;

x:=1;

y:=3;

if b then x:=x+1 else x:=y;

return x+1;

}

{

int y;

x:=true;

y:=0;

y:=f(3, False);

y:=f(True); // Type error

}

Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation and Program Analysis (#10): functions 2024-2025 ↞ 10 / 44 ↠

Functions: typing

Typing functions in Mini-C

Typing of function calls have the right number of parameters, of the right type.

There is function definition and function declaration without body: if both are
present coherence should be checked (same types for parameter and return).

Do not forget to check the return type.

Typing MiniC is quite easy, producing meaningful error message is harder!
Look at typing rule and suggest a few error messages

Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation and Program Analysis (#10): functions 2024-2025 ↞ 11 / 44 ↠

Operational Semantics for functions

1 Functions: typing

2 Operational Semantics for functions
Big-step semantics: first solution
Big-step semantics: second solution
Big-step semantics: third solution
Small-step semantics based on third solution

3 Safety of the type-system

Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation and Program Analysis (#10): functions 2024-2025 ↞ 12 / 44 ↠

Operational Semantics for functions

Mini-While Syntax 1/2

Expressions:
e ::= c | e+ e | e× e | ...

Mini-while:

S(Smt) ::= x := expr assign
| x := f(e1, .., en) simple function call
| skip do nothing
| S1;S2 sequence
| if b then S1 else S2 test
| while b do S done loop

Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation and Program Analysis (#10): functions 2024-2025 ↞ 13 / 44 ↠

Operational Semantics for functions

Mini-While Syntax 2/2

[NEW] Programs with function definitions and global variables

Prog ::= D FunDef Body Program
Body ::= D;S Function/main body

D ::= var x : τ |D;D Variable declaration
FunDef ::= τ f(x1 : τ1, .., xn : τn) Body; return e

| FunDef FunDef Function def

Note/discussion: to simplify syntax and semantics:
1) function call is not an expression but a special statement.
2) return only appears at the end of the function definition (enforced by syntax).

Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation and Program Analysis (#10): functions 2024-2025 ↞ 14 / 44 ↠

Operational Semantics for functions

Dealing with variable declaration and store management

Variable declaration: V ars(D) is the set of variables declared by D.
Reminder: we could use it to initialize the local memory when needed and ensure
progress (see typing course).
We define a global store update:

σ′[X 7→ σ](x) =σ(x) if x ∈ X

σ′(x) else

This will be used to restore part of the store to a previous value.

Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation and Program Analysis (#10): functions 2024-2025 ↞ 15 / 44 ↠

Operational Semantics for functions

Function table

For each function declared with name f we have params(f) the list of parameter
variables, ret(f) the expression in the return statement, and body(f) the function
body.

This could be formally defined as a function table Φ that is given as parameter of
the semantics, i.e.: change the signature into Φ ⊢ (S, σ) ⇓ σ′ and use Φ to obtain
ret(f), params(f), and body(f).

Here we suppose that the functions ret , params and body are globally known.

Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation and Program Analysis (#10): functions 2024-2025 ↞ 16 / 44 ↠

Operational Semantics for functions

Big step semantics (old) 1/2

⇓: Stm → (State → State)

(x := e, σ) ⇓ σ[x 7→ V al(e, σ)]

(skip, σ) ⇓ σ

(S1, σ) ⇓ σ′ (S2, σ
′) ⇓ σ′′(

(S1;S2), σ
)
⇓ σ′′

Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation and Program Analysis (#10): functions 2024-2025 ↞ 17 / 44 ↠

Operational Semantics for functions

Big step semantics (old) 2/2

V al(b, σ) = tt (S1, σ) ⇓ σ′

(if b then S1 else S2, σ) ⇓ σ′

V al(b, σ) = ff (S2, σ) ⇓ σ′

(if b then S1 else S2, σ) ⇓ σ′

V al(b, σ) = tt (S, σ) ⇓ σ′ (while b do S done, σ′) ⇓ σ′′

(while b do S done, σ) ⇓ σ′′

V al(b, σ) = ff

(while b do S done, σ) ⇓ σ

Evaluation of program: Let D FunDef D′;S be a program, its evaluation is σ′

s.t. (S, ∅) ⇓ σ′

Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation and Program Analysis (#10): functions 2024-2025 ↞ 18 / 44 ↠

Operational Semantics for functions

Additional simplification

We only give semantics to functions that have a simple parameter for the
formalisation of the semantics.
For example we use f(e) instead of f(e1, .., en). Additionally params(f) is an array
of a single element [x]
Extending to multiple parameters raises no particular issue but you should be
careful with the indices ...
In the examples we may use several parameters ...

Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation and Program Analysis (#10): functions 2024-2025 ↞ 19 / 44 ↠

Operational Semantics for functions Big-step semantics: first solution

2 Operational Semantics for functions
Big-step semantics: first solution
Big-step semantics: second solution
Big-step semantics: third solution
Small-step semantics based on third solution

Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation and Program Analysis (#10): functions 2024-2025 ↞ 20 / 44 ↠

Operational Semantics for functions Big-step semantics: first solution

Big step semantics (NEW) – First solution
Heavy manipulation of stores:

body(f) = Df ;Sf

bind1(f, e, σ) = (S, σ′) (S, σ′) ⇓ σ′′ v = V al(ret(f), σ′′)

(x := f(e), σ) ⇓ σ′′[(V ars(Df) ∪ params(f)) 7→ σ, x 7→ v]

Where:
bind1(f, e, σ) = (Sf , σ[x

′ 7→ v′])

with body(f)=Df ;Sf params(f)=[x′] Val(e, σ)=v′

Initial configuration:

(Sm, ∅) for program D FunDef D′;S

Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation and Program Analysis (#10): functions 2024-2025 ↞ 21 / 44 ↠

Operational Semantics for functions Big-step semantics: first solution

An example
Evaluate the following program:

int x

int f(int x) {

int y;

x:=1;

y:=2;

return x+1;

}

{

int y;

x:=0;

y:=0;

y:=f(3);

}
Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation and Program Analysis (#10): functions 2024-2025 ↞ 22 / 44 ↠

Operational Semantics for functions Big-step semantics: first solution

Evaluation of this first solution
Notes:

call-by-value,

parameters in store,

Non-trivial store restoration.

Variables: What happens with variables that have the same name? local vs.
local? global vs. local? recursive invocations? discussion live
Problem: σ′[(V ars(Df) ∪ params(f)) 7→ σ] is used to restore the store as it was
before the invocation.
This is really impractical: difficult to compute, difficult to reason about, far from any
implementation.
But not much changes to the other rules, the initial configuration is unchanged.

Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation and Program Analysis (#10): functions 2024-2025 ↞ 23 / 44 ↠

Operational Semantics for functions Big-step semantics: second solution

2 Operational Semantics for functions
Big-step semantics: first solution
Big-step semantics: second solution
Big-step semantics: third solution
Small-step semantics based on third solution

Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation and Program Analysis (#10): functions 2024-2025 ↞ 24 / 44 ↠

Operational Semantics for functions Big-step semantics: second solution

Big step semantics (NEW) – Second solution
Renaming and fresh variables:

bind2(f, e
′, σ) = (S′, σ′, e) (S′, σ′) ⇓ σ′′ v = V al(e, σ′′)

(x := f(e′), σ) ⇓ σ′′[x 7→ v]

bind2(f, e
′, σ) = (S′

f , σ[z 7→ v′], e)

where

body(f) = Df ;Sf params(f) = [x′] V ars(Df) = {y1..yk} z fresh

∀i ∈ [1..k]. ti fresh V al(e′, σ) = v′ S′
f = Sf [z/x

′][t1/y1]..[tk/yk]

e = ret(f)[z/x′][t1/y1]..[tk/yk]

and fresh means not in σ (and not among the other fresh variables)
Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation and Program Analysis (#10): functions 2024-2025 ↞ 25 / 44 ↠

Operational Semantics for functions Big-step semantics: second solution

An example
Evaluate the following program:

int x

int f(int x) {

int y;

x:=1;

y:=2;

return x+1;

}

{

int y;

x:=0;

y:=0;

y:=f(3);

}
Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation and Program Analysis (#10): functions 2024-2025 ↞ 26 / 44 ↠

Operational Semantics for functions Big-step semantics: second solution

Evaluation of this Second solution

Note: We can see in the store the values of variables that are hidden by the
current context but we cannot access them because of renaming.
There are also variables for function frames that are finished but are still visible,
these variables cannot be accessed any more.

Variables: The store grows (unbounded) but we could easily remove useless
variables, (detecting useless variables is not trivial but possible).

Problem: variable substitution difficult and inefficient (more difficult if recursive
blocks). But no complex store manipulation.

Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation and Program Analysis (#10): functions 2024-2025 ↞ 27 / 44 ↠

Operational Semantics for functions Big-step semantics: third solution

2 Operational Semantics for functions
Big-step semantics: first solution
Big-step semantics: second solution
Big-step semantics: third solution
Small-step semantics based on third solution

Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation and Program Analysis (#10): functions 2024-2025 ↞ 28 / 44 ↠

Operational Semantics for functions Big-step semantics: third solution

Big step semantics (NEW) – Third solution (1/2)
A store and a stack: ⇓: Stm, Stack, Store → Stack, Store

Where Stack : V ar → address and Store : address → V al

bind3(f, e
′,Σ, sto) = (S′,Σ′, sto′)

(S′,Σ′, sto′) ⇓ (Σ′′, sto′′) v = V al(ret(f), sto′′ ◦ Σ′′)

(x := f(e′),Σ, sto) ⇓ (Σ, sto′′[Σ(x) 7→ v])

bind3(f, e
′,Σ, sto) = (Sf ,Σ

′, sto[ℓ 7→ v′]) where

body(f) = Df ;Sf params(f) = [x′] Vars(Df) = {y1..yk} ℓ fresh

ℓ′1..ℓ
′
k fresh V al(e′, sto ◦ Σ)=v′ Σ′=Σ[x′ 7→ℓ][y1 7→ℓ′1]

where fresh means location not in sto (and not among the other fresh locations picked)

!! Access to store must be changed everywhere. See next slide!!

Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation and Program Analysis (#10): functions 2024-2025 ↞ 29 / 44 ↠

Operational Semantics for functions Big-step semantics: third solution

Big step semantics (NEW) – Third solution (2/2)
We now have to deal with two levels for memory addressing, this modifies the
whole semantics: V al(ei, σ) replaced by V al(ei, sto ◦ Σ) everywhere.
And we have a new assign rule: (x := e,Σ, sto) ⇓ Σ, sto[Σ(x) 7→ V al(e, sto ◦ Σ)]

the stack is “unstacked” after method invocation.

in Σ′ = Σ[x 7→ ℓ][y1...], Σ is too big: only global variables are needed.

Works with recursively defined blocks with local variables (how?)

Memory grows unbounded but Σ is bounded; we could remove useless locations (gc
or manually), they are easy to spot.

Have to deal with two levels for memory addressing but this is closer to reality (e.g.
statements are not modified upon function call).

What is a good initial configuration (in particular Σ)?

Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation and Program Analysis (#10): functions 2024-2025 ↞ 30 / 44 ↠

Operational Semantics for functions Big-step semantics: third solution

An example
Evaluate the following program:

int x

int f(int x) {

int y;

x:=1;

y:=2;

return x+1;

}

{

int y;

x:=0;

y:=0;

y:=f(3);

}
Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation and Program Analysis (#10): functions 2024-2025 ↞ 31 / 44 ↠

Operational Semantics for functions Small-step semantics based on third solution

2 Operational Semantics for functions
Big-step semantics: first solution
Big-step semantics: second solution
Big-step semantics: third solution
Small-step semantics based on third solution

Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation and Program Analysis (#10): functions 2024-2025 ↞ 32 / 44 ↠

Operational Semantics for functions Small-step semantics based on third solution

Structural Op. Semantics (SOS = small step) for mini-while (OLD)

(x := a, σ) ⇒ σ[x 7→ V al(a, σ)]

(skip, σ) ⇒ σ

(S1, σ) ⇒ σ′(
(S1;S2), σ

)
⇒ (S2, σ′)

(S1, σ) ⇒ (S′
1, σ

′)(
(S1;S2), σ

)
⇒ (S′

1;S2, σ′)

V al(b, σ) = tt

(if b then S1 else S2, σ) ⇒ (S1, σ)

V al(b, σ) = ff

(if b then S1 else S2, σ) ⇒ (S2, σ)

Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation and Program Analysis (#10): functions 2024-2025 ↞ 33 / 44 ↠

Operational Semantics for functions Small-step semantics based on third solution

the challenge with small step semantics

Writing a SOS is often desirable but with our functions it raises several challenges.
Indeed call and return cannot be done in the same rule, and thus:

Previous state of the memory (before function call is not accessible in the rule
for returning from the function),

The point where the caller was before the call is also lost.

General solution: add thee information and define an extended syntax for
“configurations” i.e. state of the program execution at runtime.
In the real life where we do not have

Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation and Program Analysis (#10): functions 2024-2025 ↞ 34 / 44 ↠

Operational Semantics for functions Small-step semantics based on third solution

OLD SOS with new store structure – Principle
New configuration: (Stm, ??, Stack, Store). ?? defined later.

(x := e, ??,Σ, sto) ⇒ (Σ, sto[Σ(x) 7→ V al(e, sto ◦ Σ)])

(skip, ??,Σ, sto) ⇒ (Σ, sto)

(S1, ??,Σ, sto) ⇒ (Σ′, sto′)(
(S1;S2), ??,Σ, sto

)
⇒ (S2, ??,Σ′, sto′)

(S1, ??,Σ, sto) ⇒ (S′
1, ??,Σ

′, sto′)(
(S1;S2), ??,Σ, sto

)
⇒ ((S′

1;S2), ??,Σ′, sto′)

V al(b, sto ◦ Σ) = tt

(if b then S1 else S2, ??,Σ, sto) ⇒ (S1, ??,Σ, sto)

V al(b, sto ◦ Σ) = ff

(if b then S1 else S2, ??,Σ, sto) ⇒ (S2, ??,Σ, sto)

Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation and Program Analysis (#10): functions 2024-2025 ↞ 35 / 44 ↠

Operational Semantics for functions Small-step semantics based on third solution

Small step semantics, based on third solution

?? is used to remember the execution contexts: it is a list of (Stack, Stm). Let:: be the list
constructor. Ctx is a list of (Stack, Stm). In the big step semantics this is not needed
because the inference is more complex (and remembers contexts)

CALL
bind3(f, e

′,Σ, sto) = (S′,Σ′, sto′)

(x := f(e′);S,Ctx,Σ, sto) ⇒ (S′, (Σ, x := R(f);S) :: Ctx,Σ′, sto′)

x := f(e′);S is (by definition) the whole current statement (body). R(f) is just a marker
that remembers the name of the function called (and the calling point).
bind3 is already defined.

Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation and Program Analysis (#10): functions 2024-2025 ↞ 36 / 44 ↠

Operational Semantics for functions Small-step semantics based on third solution

SOS with new store structure and contexts

(x := e, Ctx,Σ, sto) ⇒ (Ctx,Σ, sto[Σ(x) 7→ V al(e, sto ◦ Σ)])

(S1, Ctx,Σ, sto) ⇒ (Ctx,Σ′, sto′)(
(S1;S2), Ctx,Σ, sto

)
⇒ (S2, Ctx,Σ′, sto′)

(S1, Ctx,Σ, sto) ⇒ (S′
1, Ctx,Σ′, sto′)(

(S1;S2), Ctx,Σ, sto
)
⇒ (S′

1;S2, Ctx,Σ′, sto′)

And a new rule for return (when current computation finished)

v = V al(ret(f), sto ◦ Σ′)

((Σ, x := R(f);S) :: Ctx,Σ′, sto) ⇒ (S,Ctx,Σ, sto[Σ(x) 7→ v])

if, skip, and while rules are trivially adapted
Initial configuration like in the third solution for big step, with an empty Ctx.

What do we have at the end of the execution?
Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation and Program Analysis (#10): functions 2024-2025 ↞ 37 / 44 ↠

Operational Semantics for functions Small-step semantics based on third solution

An example
Evaluate the following program:

int x

int f(int x) {

int y;

x:=1;

y:=2;

return x+1;

}

{

int y;

x:=0;

y:=0;

y:=f(3);

}
Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation and Program Analysis (#10): functions 2024-2025 ↞ 38 / 44 ↠

Safety of the type-system

1 Functions: typing

2 Operational Semantics for functions

3 Safety of the type-system

Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation and Program Analysis (#10): functions 2024-2025 ↞ 39 / 44 ↠

Safety of the type-system

[REMINDER] Safety = well typed programs do not go wrong
In case of a small-step semantics safety relies on two lemmas:
Well-type programs run without error

Lemma (progression for mini-while)
If Γ ⊢ (S, σ), then there exists S′, σ′ such that (S, σ) ⇒ (S′, σ′)

OR there exists σ′ such that (S, σ) ⇒ σ′.

... and remain well-typed

Lemma (preservation)
If Γ ⊢ (S, σ) and (S, σ) ⇒ (S′, σ′) then Γ ⊢ (S′, σ′).

Note: (S, σ) cannot be a final configuration. Γ never changes (defined by declarations)

Recall the property for expression evaluation: if σ and Γ agree on all variables the

valuation of the expression is of the right type.

Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation and Program Analysis (#10): functions 2024-2025 ↞ 40 / 44 ↠

Safety of the type-system

[Reminder] Typing rules (simplified with 1 parameter)
Typing of statements has the form : Γ,Γf ⊢ S Where Γ: map that defines the
variable types, Γf : function map, S statement.

D →d Γg Fundef →f Γf Dm →d Γm Γg + Γm,Γf ⊢ S

∀(τ f(x1) Df ;Sf ; return e ∈ Fundef).Γg + Γl ⊢ e : τ ∧ Γg + Γl,Γf ⊢ Sf with x1 : τ1;Df →d Γl

⊢ D Fundef Dm;S

Γg +Γl overrides Γg with Γl, i.e. (Γg +Γl)(x) is Γl(x) if it is defined and Γg(x) else.

CALL

Γf (f) = τ1 → τ Γ ⊢ e : τ1 Γ ⊢ x : τ

Γ,Γf ⊢ x := f(e)

Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation and Program Analysis (#10): functions 2024-2025 ↞ 41 / 44 ↠

Safety of the type-system

State type safety and prove it for functions
Slight change in the correctness wrt store, it cannot be:

Γ ⊢ (S, σ) ⇐⇒ (Γ ⊢ S ∧ ∀x. ∅ ⊢ σ(x) : τ ⇐⇒ Γ(x) = τ)

any more!
Attempt 1:

Γ,Γf ⊢ (S,Ctx,Σ, σ) ⇐⇒
(
Γ,Γf ⊢ S ∧ ∀x. (∅ ⊢ σ(Σ(x)) : τ ⇐⇒ Γ(x) = τ)

∧ ∀(Σ′, y := R(f);S′) ∈ Ctx.Γ,Γf ⊢ S′ ∧ ∀x. (∅ ⊢ σ(Σ′(x)) : τ ⇐⇒ Γ(x) = τ)

∧ ∃τ ′.Γf (f) = τ1(..τn) → τ ′ ∧ Γ(y) = τ ′

∧ all function bodies are well-typed (cf rule)
)

What is wrong?

Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation and Program Analysis (#10): functions 2024-2025 ↞ 42 / 44 ↠

Safety of the type-system

Preservation and progress

. On board: adaptation of the theorem + proof “sketch” for one or 2 cases
Recall we have to deal with variable initialisation.
First, we need also a typing rule for x := R(f) !

Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation and Program Analysis (#10): functions 2024-2025 ↞ 43 / 44 ↠

Safety of the type-system

Conclusion

While typing for Mini-While with functions is straightforwards, we have seen that
there is some margin for design of its operational semantics. Interestingly, a
satisfying solution implements at a higher level of abstraction the exact same
intuitions we have followed to generate code when compiling functions.
In particular, care had to be taken to:

properly handling the scope of variables: pushing and popping a stack of
environments (See FP);

properly restoring the continuation when returning (See SP)

Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation and Program Analysis (#10): functions 2024-2025 ↞ 44 / 44 ↠

	Functions: typing
	Operational Semantics for functions
	Safety of the type-system

